LITHIUM-ION BATTERY STATE ESTIMATION METHOD BASED ON SUKF-EKF FUSION

Wang Qiwen, Sheng Qiang, He Yucai

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 11-21.

PDF(3817 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3817 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 11-21. DOI: 10.19912/j.0254-0096.tynxb.2025-0830

LITHIUM-ION BATTERY STATE ESTIMATION METHOD BASED ON SUKF-EKF FUSION

  • Wang Qiwen1, Sheng Qiang1, He Yucai2
Author information +
History +

Abstract

To address the insufficient accuracy and poor adaptability to parameter variations of Extended Kalman Filter (EKF) in lithium-ion battery state estimation, this paper proposes a method utilizing EKF for online battery parameter identification and updating, while integrating Sliding Mode Observer (SMO) and Unscented Kalman Filter (UKF) for lithium battery state estimation (SUKF). The method establishes a dual-layer temporal scale collaborative estimation architecture, employing EKF for online battery parameter identification and State of Health (SOH) estimation, while combining SMO’s robustness with UKF’s nonlinear processing capabilities to achieve high-precision State of Charge (SOC) estimation. Verification through three representative testing environments—highway fuel economy test conditions, New European driving cycle, and urban dynamometer driving schedule—demonstrates that the fusion algorithm achieves average SOC estimation errors of 0.13%, 0.25%, and 0.14% respectively, with maximum errors constrained within 0.46%, representing over 85% improvement in accuracy compared to traditional EKF algorithms. SOH estimation under varying complexity conditions exhibits average errors ranging from 0.022% to 0.16%, with maximum errors not exceeding 0.53%. Under 5% noise disturbance conditions, the algorithm demonstrates robust estimation accuracy and convergence performance. As operational complexity increases, the performance advantages of the fusion algorithm become more pronounced, significantly enhancing the accuracy and robustness of battery state estimation, thus providing an effective solution for power battery management systems.

Key words

lithium-ion battery / state estimation / sliding mode observer / unscented Kalman filter / state of charge / state of health

Cite this article

Download Citations
Wang Qiwen, Sheng Qiang, He Yucai. LITHIUM-ION BATTERY STATE ESTIMATION METHOD BASED ON SUKF-EKF FUSION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 11-21 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0830

References

[1] 谭泽富, 彭涛, 代妮娜, 等. 电动汽车BMS关键技术研究进展[J]. 电源技术, 2022, 46(9): 954-957.
TAN Z F, PENG T, DAI N N, et al.Research progress on key technologies of BMS for electric vehicles[J]. Chinese journal of power sources, 2022, 46(9): 954-957.
[2] XIONG R, CAO J Y, YU Q Q, et al.Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE access, 2017, 6: 1832-1843.
[3] 张宇, 李维嘉, 吴铁洲. 基于BP-DCKF-LSTM的锂离子电池SOC估计[J]. 电源技术, 2025, 49(1): 155-166.
ZHANG Y, LI W J, WU T Z.Lithium ion battery SOC estimation based on BP-DCKF-LSTM[J]. Chinese journal of power sources, 2025, 49(1): 155-166.
[4] 黄佳茵, 白俊琦, 贤燕华. 基于DOD-LN-GPR模型的锂离子电池SOH估计方法[J]. 太阳能学报, 2025, 46(2): 60-69.
HUANG J Y, BAI J Q, XIAN Y H.SOH estimation method of lithium-ion batteries based on DOD-LN-GPR model[J]. Acta energiae solaris sinica, 2025, 46(2): 60-69.
[5] KIM E, KIM M, KIM J, et al.Data-driven methods for predicting the state of health, state of charge, and remaining useful life of Li-ion batteries: a comprehensive review[J]. International journal of precision engineering and manufacturing, 2023, 24(7): 1281-1304.
[6] 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
FU S Y, LYU T L, MIN F Q, et al.Overview of SOC estimation methods for lithium-ion batteries for electric vehicles[J]. Energy storage science and technology, 2021, 10(3): 1127-1136.
[7] 王越, 李立伟. 基于扩展卡尔曼滤波器的锂电池SOC估算仿真研究[J]. 计算机与数字工程, 2020, 48(1): 206-211.
WANG Y, LI L W.Simulation research of lithium battery SOC estimation based on extended Kalman filter[J]. Computer & digital engineering, 2020, 48(1): 206-211.
[8] 李锦满, 李儒欢, 李浩南, 等. 基于无迹卡尔曼滤波的动力电池状态估计[J]. 电池, 2024, 54(3): 340-343.
LI J M, LI R H, LI H N, et al.State estimation of power battery based on unscented Kalman filter[J]. Battery, 2024, 54(3): 340-343.
[9] HUANGFU Y G, XU J N, ZHAO D D, et al.A novel battery state of charge estimation method based on a super-twisting sliding mode observer[J]. Energies, 2018, 11(5): 1211.
[10] 钱伟, 王浩宇, 郭向伟, 等. 联合改进滑模观测器的自适应卡尔曼滤波荷电状态估计[J]. 电工技术学报, 2025, 40(6): 1984-1994.
QIAN W, WANG H Y, GUO X W, et al.State of charge estimation using adaptive Kalman filter with improved sliding mode observer[J]. Transactions of China Electrotechnical Society, 2025, 40(6): 1984-1994.
[11] 赵轩, 李美莹, 余强, 等. 电动汽车动力锂电池状态估计综述[J]. 中国公路学报, 2023, 36(6): 254-283.
ZHAO X, LI M Y, YU Q, et al.Review on state estimation of power lithium battery for electric vehicle[J]. China journal of highway and transport, 2023, 36(6): 254-283.
[12] ZHANG Y Z, XIONG R, HE H W, et al.A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction[C]//2017 Prognostics and System Health Management Conference (PHM-Harbin). Harbin, China, 2017: 1-4.
[13] PENG N, ZHANG S Z, GUO X, et al.Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter[J]. International journal of energy research, 2021, 45(1): 975-990.
[14] 吕高, 樊郭宇, 张嘉蕾, 等. 温度自适应SMO算法估计锂离子电池的SOC[J]. 电池, 2024, 54(3): 334-339.
LYU G, FAN G Y, ZHANG J L, et al.SOC estimation for Li-ion battery used by temperature adaptive SMO algorithm[J]. Battery bimonthly, 2024, 54(3): 334-339.
[15] 王志福, 罗崴, 闫愿, 等. 基于多方法融合的锂离子电池SOC-SOH联合估计[J]. 北京理工大学学报, 2023, 43(6): 575-584.
WANG Z F, LUO W, YAN Y, et al.Joint SOC-SOH estimation for Li-ion batteries based on multi-method fusion[J]. Transactions of Beijing Institute of Technology, 2023, 43(6): 575-584.
[16] 李心月, 储江伟. 混合电动汽车锂离子电池状态融合估计策略[J]. 电源技术, 2023, 47(2): 204-209.
LI X Y, CHU J W.Novel fusion estimation strategy for state of charge and state of health of hybrid electric vehicle Li-ion batteries[J]. Chinese journal of power sources, 2023, 47(2): 204-209.
[17] WEI Z B, LI X L, XU L J, et al.Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler[J]. Energy, 2013, 55: 683-692.
[18] 孙玉树, 李宏川, 王波, 等. 电池储能系统SOC神经网络融合估计方法[J]. 湖南大学学报(自然科学版), 2023, 50(10): 31-40.
SUN Y S, LI H C, WANG B, et al.SOC neural network fusion estimation method for battery energy storage system[J]. Journal of Hunan University (natural sciences), 2023, 50(10): 31-40.
[19] 董磊, 赖纪东, 苏建徽, 等. 基于IMAFFRLS-EKF的锂电池在线参数辨识和SOC估计方法[J]. 太阳能学报, 2024, 45(6): 66-74.
DONG L, LAI J D, SU J H, et al.Online parameter identification and SOC estimation of lithium battery based on IMAFFRLS-EKF[J]. Acta energiae solaris sinica, 2024, 45(6): 66-74.
[20] 李谦, 姜帆, 韩乔妮, 等. 基于一阶ECM-IGPR的锂离子电池SOC及SOH联合估计框架[J]. 太阳能学报, 2024, 45(5): 240-250.
LI Q, JIANG F, HAN Q N, et al.Joint first order SOC and SOH estimation framework for Li-ion battery based on ECM-IGPR[J]. Acta energiae solaris sinica, 2024, 45(5): 240-250.
[21] LIU Y Y, CAI T T, LIU J B, et al.State of charge estimation for Li-ion batteries based on an unscented H-infinity filter[J]. Journal of electrical engineering & technology, 2020, 15(6): 2529-2538.
[22] BEHNAMGOL V, ASADI M, MOHAMED M A A, et al. Comprehensive review of lithium-ion battery state of charge estimation by sliding mode observers[J]. Energies, 2024, 17(22): 5754.
[23] LIU W Z, HUO Z Y, LUO X W.Lithium-ion batteries SOC estimation using an ANFIS-based adaptive sliding mode observer for electric vehicle applications infrastructures[J]. International journal of critical infrastructures, 2024, 20(6): 538-556.
[24] 邓涛, 罗卫兴. 电动汽车动力电池SOH估计方法探讨[J]. 现代制造工程, 2018(5): 43-49.
DENG T, LUO W X.Research on estimation methods of battery SOH for electric vehicle[J]. Modern manufacturing engineering, 2018(5): 43-49.
PDF(3817 KB)

Accesses

Citation

Detail

Sections
Recommended

/