OPTIMAL OPERATION STRATEGY OF MULTI-MICROGRID HYBRID GAME CONSIDERING ELECTRICITY-CARBON COUPLING TRADING

Liu Jiajia, Tian Mingxing, Liu Siyuan, Su Zhaoxu, Sun Lijun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 553-565.

PDF(2238 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2238 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 553-565. DOI: 10.19912/j.0254-0096.tynxb.2025-0914

OPTIMAL OPERATION STRATEGY OF MULTI-MICROGRID HYBRID GAME CONSIDERING ELECTRICITY-CARBON COUPLING TRADING

  • Liu Jiajia1,2, Tian Mingxing1,2, Liu Siyuan1, Su Zhaoxu1,2, Sun Lijun1,3
Author information +
History +

Abstract

In order to realize the collaborative management problem of multi-microgrids (MMG), and to balance the distribution of benefits between the distribution system operator (DSO) and each MG while guaranteeing low-carbon and economic operation of the system, this paper proposes a hybrid game strategy for multi-microgrids that considers electricity-carbon coupling trading. Firstly, a master-slave game model is constructed with the DSO as the leader and the MGs as the followers. Secondly, based on Nash bargaining theory, a cooperative game model between microgrids considering electricity-carbon coupling trading is constructed, and in the benefit distribution mechanism, the comprehensive contribution rate is used to ensure a fair and reasonable distribution of benefits. The distributed solution of this hybrid game is realized through the synergistic iteration of bisection method and alternating direction multiplier method (ADMM), which improves the computational efficiency while ensuring the information privacy. Comparative analysis and case studies demonstrate that the proposed strategy can effectively enhance the benefits of each subject, reduce the carbon emissions of the system, and realize the fair distribution of benefits among microgrids.

Key words

multi-microgrids / distribution network / game theory / electricity-carbon coupling trading / comprehensive contribution rate / ADMM

Cite this article

Download Citations
Liu Jiajia, Tian Mingxing, Liu Siyuan, Su Zhaoxu, Sun Lijun. OPTIMAL OPERATION STRATEGY OF MULTI-MICROGRID HYBRID GAME CONSIDERING ELECTRICITY-CARBON COUPLING TRADING[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 553-565 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0914

References

[1] 彭静, 王军, 亓富军, 等. “双碳”目标下配电网多阶段扩展规划[J]. 电力系统保护与控制, 2022, 50(7): 153-161.
PENG J, WANG J, QI F J, et al.Multi-stage expansion planning of a distribution network with double-carbon policy[J]. Power system protection and control, 2022, 50(7): 153-161.
[2] 郑诗程, 许浩, 郎佳红, 等. 计及光伏不确定性的多区域综合能源系统多场景分布鲁棒优化调度[J]. 太阳能学报, 2024, 45(3): 460-469.
ZHENG S C, XU H, LANG J H, et al.Multi-scenario distributed robust optimal scheduling of multi-area integrated energy systems considering photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2024, 45(3): 460-469.
[3] 刘佳佳, 田铭兴, 毛旭升. 基于主从博弈的配电网与多微网两阶段能源管理策略[J]. 太阳能学报, 2025, 46(6): 347-359.
LIU J J, TIAN M X, MAO X S.Two-stage energy management strategy for distribution networks and multi-microgrids based on master-slave game[J]. Acta energiae solaris sinica, 2025, 46(6): 347-359.
[4] 徐青山, 李淋, 蔡霁霖, 等. 考虑电能交互的冷热电多微网系统日前优化经济调度[J]. 电力系统自动化, 2018, 42(21): 36-44.
XU Q S, LI L, CAI J L, et al.Day-ahead optimized economic dispatch of CCHP multi-microgrid system considering power interaction among microgrids[J]. Automation of electric power systems, 2018, 42(21): 36-44.
[5] 袁全, 王红艳, 周磊. 计及P2P交易的多冷热电联供型微网联合调度模型[J]. 电气自动化, 2023, 45(1): 42-46.
YUAN Q, WANG H Y, ZHOU L.Joint scheduling model of multi cooling, heating and power cogeneration microgrid considering P2P transaction[J]. Electrical automation, 2023, 45(1): 42-46.
[6] 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4): 1307-1321.
LI P, WU D F, LI Y W, et al.Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and Stackelberg game[J]. Proceedings of the CSEE, 2021, 41(4): 1307-1321.
[7] XU D, ZHOU B, LIU N, et al.Peer-to-peer multienergy and communication resource trading for interconnected microgrids[J]. IEEE transactions on industrial informatics, 2021, 17(4): 2522-2533.
[8] 刘可真, 董敏, 杨春昊, 等. 基于纳什谈判的智能园区P2P电能交易优化运行[J]. 电力自动化设备, 2023, 43(5): 45-53.
LIU K Z, DONG M, YANG C H, et al.Optimal operation of P2P electric power trading in smart park based on Nash negotiation[J]. Electric power automation equipment, 2023, 43(5): 45-53.
[9] 崇志强, 陈培育, 李树青, 等. 基于合作博弈论的P2P电力交易方法[J]. 电力系统及其自动化学报, 2021, 33(12): 87-92, 100.
CHONG Z Q, CHEN P Y, LI S Q, et al.P2P energy trading method based on cooperative game theory[J]. Proceedings of the CSU-EPSA, 2021, 33(12): 87-92, 100.
[10] 刘海涛, 仲聪, 马佳伊, 等. 考虑条件风险价值和阶梯碳交易的综合能源系统优化调度[J]. 电测与仪表, 2024, 61(4): 100-108.
LIU H T, ZHONG C, MA J Y, et al.Optimal dispatching of integrated energy system considering conditional value at risk and ladder carbon trading[J]. Electrical measurement & instrumentation, 2024, 61(4): 100-108.
[11] 王金锋, 于广亮, 姜炎君, 等. 基于阶梯碳交易的多微网电能合作运行优化策略[J]. 电网与清洁能源, 2023, 39(11): 28-39.
WANG J F, YU G L, JIANG Y J, et al.The optimization strategy for collaborative operation of multi-microgrids based on tiered carbon trading[J]. Power system and clean energy, 2023, 39(11): 28-39.
[12] HUANG Y J, WANG Y D, LIU N.Low-carbon economic dispatch and energy sharing method of multiple integrated energy systems from the perspective of system of systems[J]. Energy, 2022, 244: 122717.
[13] 万昶. 基于纳什议价的多综合能源微网合作运行优化策略[D]. 南昌: 南昌大学, 2023.
WAN C.Cooperative operation optimization strategy of multi-comprehensive energy microgrid based on Nash bargaining[D]. Nanchang: Nanchang University, 2023.
[14] 葛少云, 程雪颖, 刘洪, 等. 园区多微网P2P电-碳耦合交易市场设计[J]. 高电压技术, 2023, 49(4): 1341-1349.
GE S Y, CHENG X Y, LIU H, et al.Market design of P2P electricity carbon coupling transaction among multi-microgrids in a zone[J]. High voltage engineering, 2023, 49(4): 1341-1349.
[15] 王再闯, 陈来军, 李笑竹, 等. 基于合作博弈的能源共享模式下多园区低碳优化调度[J]. 高电压技术, 2023, 49(4): 1380-1391.
WANG Z C, CHEN L J, LI X Z, et al.Multi-park low-carbon optimal scheduling under energy sharing mode based on cooperative game[J]. High voltage engineering, 2023, 49(4): 1380-1391.
[16] 乔学博, 杨志祥, 李勇, 等. 计及两级碳交易和需求响应的多微网合作运行优化策略[J]. 高电压技术, 2022, 48(7): 2573-2583.
QIAO X B, YANG Z X, LI Y, et al.Optimization strategy for cooperative operation of multi-microgrids considering two-level carbon trading and demand response[J]. High voltage engineering, 2022, 48(7): 2573-2583.
[17] WU C T, ZHOU D Z, LIN X N, et al.A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems[J]. Energy, 2022, 252: 124060.
[18] 张冲标, 钱辰雯, 俞红燕, 等. 基于ADMM的多场景县域多微电网交互运行策略[J]. 中国电力, 2024, 57(2): 9-18.
ZHANG C B, QIAN C W, YU H Y, et al.Interactive operation strategy for multi-scenario county-level multi-microgrid based on ADMM[J]. Electric power, 2024, 57(2): 9-18.
[19] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[20] 吴锦领, 楼平, 管敏渊, 等. 基于非对称纳什谈判的多微网电能共享运行优化策略[J]. 电网技术, 2022, 46(7): 2711-2723.
WU J L, LOU P, GUAN M Y, et al.Operation optimization strategy of multi-microgrids energy sharing based on asymmetric Nash bargaining[J]. Power system technology, 2022, 46(7): 2711-2723.
[21] 姜恩宇, 陈周, 史雷敏, 等. 计及多重不确定性与综合贡献率的多微网合作运行策略[J]. 太阳能学报, 2023, 44(10): 80-89.
JIANG E Y, CHEN Z, SHI L M, et al.Cooperative operation strategy of multi-microgrids based on multiple uncertainties and comprehen sive contribution rate[J]. Acta energiae solaris sinica, 2023, 44(10): 80-89.
[22] 张忠会, 熊骁跃, 万昶, 等. 计及电-碳交易与综合贡献率的多微网合作运行优化策略[J]. 电网技术, 2024, 48(8): 3258-3268.
ZHANG Z H, XIONG X Y, WAN C, et al.Multi-microgrids cooperative operation optimization strategy considering electricity-carbon trading and comprehensive contribution rate[J]. Power system technology, 2024, 48(8): 3258-3268.
[23] 柏昊阳, 李华强, 臧天磊, 等. 柔性网架结构下考虑双边交易的多微网与配网协同规划[J]. 电力系统保护与控制, 2024, 52(6): 51-64.
BAI H Y, LI H Q, ZANG T L, et al.Collaborative planning of multiple microgrids and a distribution network considering bilateral transactions in a flexible network structure[J]. Power system protection and control, 2024, 52(6): 51-64.
[24] 李咸善, 马凯琳, 程杉. 含多区域综合能源系统的主动配电网双层博弈优化调度策略[J]. 电力系统保护与控制, 2022, 50(1): 8-22.
LI X S, MA K L, CHENG S.Dispatching strategy of an active distribution network with multiple regional integrated energy systems based on two-level game optimization[J]. Power system protection and control, 2022, 50(1): 8-22.
[25] 陈乐飞, 朱自伟, 王凯, 等. 基于混合博弈的配电网与多综合能源微网优化运行[J]. 电网技术, 2023, 47(6): 2229-2243.
CHEN L F, ZHU Z W, WANG K, et al.Optimal operation of distribution networks and multiple integrated energy microgrids based on mixed game theory[J]. Power system technology, 2023, 47(6): 2229-2243.
[26] 董雷, 涂淑琴, 李烨, 等. 基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理[J]. 电网技术, 2020, 44(3): 973-983.
DONG L, TU S Q, LI Y, et al.A Stackelberg game model for dynamic pricing and energy management of multiple virtual power plants using metamodel-based optimization method[J]. Power system technology, 2020, 44(3): 973-983.
[27] CUI S C, WANG Y W, LIU X K, et al.Economic storage sharing framework: asymmetric bargaining-based energy cooperation[J]. IEEE transactions on industrial informatics, 2021, 17(11): 7489-7500.
PDF(2238 KB)

Accesses

Citation

Detail

Sections
Recommended

/