针对现有的技术缺陷,提出一种高电压增益的单级逆变电路,利用直流侧改良倍压单元和逆变侧直通状态,实现交流输出电压受耦合绕组匝数比和直通占空比的双自由度调节,在小直通占空比时能够获得高升压比。分析新拓扑的工作模态、各元件之间的电压和电流关系以及比较三相桥式逆变器总开关功率。在此基础上,分析寄生参数条件下逆变器升压比与效率之间的关系。最后,搭建850 W实验样机进行验证,实验结果与理论分析和仿真结果一致,验证所提逆变器的正确性和可行性。
Abstract
Aiming at the existing technical defects, this paper proposed a high-boost single-stage inverter(VMC-qZSI), which uses voltage multiplier units of DC-link and shoot-through state of inverter-link to realize dual degree of freedom adjustment of the AC output voltage by the coupled-inductor turns ratio n and shoot-through duty cycle D. A high voltage gain can be obtained when the D is small. The working mode of the new toplogy, voltage and current relationship between each component, and the comparison of the total switching power of three phase bridge type inverters are, described. On this basis, the relationship between the boost ratio and the efficiency of the inverter under the parasitic conditions is deduced. An 850 W prototype was built in the laboratory to verify the validity of the proposed inverter. Experimental results prove the validity and feasibility of the proposed inverters.
关键词
光伏 /
逆变器 /
效率 /
准Z源 /
拓扑 /
高电压增益
Key words
photovoltaic /
inverters /
efficiency /
quasi-Z-source /
topology /
high gain
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钱为, 徐政, 陈锐坚. 风光互补提水系统的研究与开发[J]. 太阳能学报, 2019, 40(9): 2479-2485.
QIAN W, XU Z, CHEN R J.Research and development of hybrid PV-wind pumping systems[J]. Acta energiae solaris sinica, 2019, 40(9): 2479-2485.
[2] FU J Z, S M. Energy management strategy based on weather condition for photovoltaic-energy storage integrated power system[J]. Power system protection and control, 2018, 46(24): 142-149.
[3] 魏腾飞, 王晓兰, 伏勇宏. 光伏反激并网逆变器输出电流质量的改善[J]. 太阳能学报, 2019, 40(12): 3534-3540.
WEI T F, WANG X L, FU Y H.Improvement of current quality of photovoltaic flyback grid-connected inverters[J]. Acta energiae solaris sinica, 2019, 40(12): 3534-3540.
[4] PENG F Z.Z-source inverter[J]. IEEE transactions on industry application, 2003, 39(2): 504-510.
[5] 甘世红, 褚建新, 顾伟, 等. 基于LCL滤波器的新型Z源光伏并网逆变器[J]. 太阳能学报, 2017, 38(6): 1577-1583.
GAN S H, ZHU J X, GU W, et al.A new Z - source grid-connected photovoltaic inverter based on LCL filter[J]. Acta energiae solaris sinica, 2017, 38(6): 1577-1583.
[6] 刘鸿鹏, 王卫, 吴辉. 基于单周期Z源电容电压调节的并网电流控制策略[J]. 太阳能学报, 2014, 35(6): 979-984.
LIU H P, WANG W, WU H.Control strategy of on-grid current based on one-cycle Z-source capacitor voltage-change adjustment[J]. Acta energiae solaris sinica, 2016, 37(11): 2965-2972.
[7] 王晓刚, 肖立业. Z源LCL型光伏并网逆变器的综合控制策略[J]. 太阳能学报, 2016, 37(11): 2965-2972.
WANG X G, XIAO L Y.Comprehensive control strategy of LCL-based Z-source photovoltaic grid-connected inverter[J]. Acta energiae solaris sinica, 2016, 37(11): 2965-2972.
[8] UMARANI D, SEYEZHAI R.Study of Z-source inverter impedance networks using 2ω analysis for photovoltaic applications[J]. Applied mechanics & materials, 2016, 852(2): 867-874.
[9] LI T, CHENG Q M.A comparative study of Z-source inverter and enhanced topologies[J]. China Electrotechnical Society transactions on electrical machines and systems, 2018, 2(3): 284-288.
[10] DEHGHAN S M, MOHAMADIAN M, GHAREHANI R.Analysis and carrier-based modulation of Z-source NPC inverters[J]. International journal of electronics, 2012, 99(8): 1075-1099.
[11] LIU J F, WU J L, QIU J Y.Switched Z-source/quasi-Z-source DC-DC converters with reduced passive components for photovoltaic systems[J]. IEEE access, 2019, 7(1): 40893-40903.
[12] NAOKI K, RYUJI I, TAKANORI I.Loss analysis of quasi Z-source inverter with superjunction-MOSFET[J]. Electrical engineering in Japan, 2018, 205(2): 54-61.
[13] QIAN W, PENG F Z, CHA H.Trans-Z-source inverters[J]. IEEE transactions on power electronics, 2011, 26(12): 3453-3463.
[14] LOH P C, LI D, BLAABJERG F.Γ-Z-source inverters[J]. IEEE transactions on power electronics, 2013, 28(11): 4880-4884.
[15] NGUYEN M K, LIM Y C, PARK S J.Improved trans-Z-source inverter with continuous input current and boost inversion capability[J]. IEEE transactions on power electronics, 2013, 28(10): 4500-4510.
[16] ZESHAN A, MOIN H.Operational analysis of improved Γ-Z-source inverter with clamping diode and its comparative evaluation[J]. IEEE transactions on industrial electronics, 2017, 64(12): 9191-9200.