格尼襟翼垂直轴风力机风场研究

倪露露, 缪维跑, 李春, 朱海天

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 365-372.

PDF(2956 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2956 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 365-372. DOI: 10.19912/j.0254-0096.tynxb.2020-0217

格尼襟翼垂直轴风力机风场研究

  • 倪露露1, 缪维跑1,2, 李春1,2, 朱海天1
作者信息 +

INVESTIGATION OF EFFECT OF GURNEY FLAP ON PERFORMANCE OF VERTICAL AXIS WIND TURBINE IN ARRAY CONFIGURATIONS

  • Ni Lulu1, Miao Weipao1,2, Li Chun1,2, Zhu Haitian1
Author information +
文章历史 +

摘要

为研究垂直轴风力机风场中机组气动性能受格尼襟翼的影响,采用TSST湍流模型对直线翼垂直轴风力机进行数值模拟研究。结果表明:风场上游风力机组尖速比越大,机组间流体加速效果越显著,使风力机组气动性能高于单风力机;在中低尖速比时,格尼襟翼可有效提升单个风力机气动效率,在尖速比较高时,提升效果并不明显;在风力机组中安装格尼襟翼且可优化上游风力机组尾迹流场并提高机组间流体的加速效果,使下游风力机获得更高的风能利用率;当格尼襟翼风力机组采用交错排布方式时,下游风力机可利用阻塞效应和格尼襟翼的双重优势,叶片平均切向力较单风力机大幅提升,且风场中3台风力机切向力的平均值高于单台风力机,风场中机组整体性能得到提高。

Abstract

To investigate the effect of Gurney flap on the aerodynamic performance of the vertical axis wind turbine (VAWT) in array configurations, the computational fluid dynamics (CFD) simulations aimed at straight blade vertical axis wind turbine by means of the TSST turbulence model is presented. The results indicate that: with the tip speed ratio of upstream paired VAWTs in array configurations increasing, the phenomenon of flow velocity acceleration though the gap of the configrations is more obvious, which makes the aerodynamic performance of the VAWTs in array configurations be better than that of isolated wind turbine. The Gurney flap can improve significantly the power extraction of the isolated VAWT in low-medium tip speed ratio region while in relatively high tip speed ratio region, the improvement effect is not obvious. The installations of Gurney flap on the VAWT array configurations can optimize the wake flow filed of upstream turbines and increase the acceleration effect of the gap between upstream turbines, so that the downstream rotor achieves higher power coefficient. When vertical axis wind turbine farm configurations with Gurney flap adopted staggered arrangement pattern, the downstream wind turbine can utilize the both advantages of blockage effects and the Gurney flap, leading to a significantly enhancement of the average tangential force of the single blade compared to isolated machine. Meanwhile, the average value of the tangential force of the three machines in the wind farm is higher than that of the isolated wind turbine, and the overall performance of the wind turbines in the wind farm is improved.

关键词

垂直轴风力机 / 数值模拟 / 气动特性 / 格尼襟翼 / 风场

Key words

vertical axis wind turbines / numerical simulation / aerodynamic characteristics / Gurney flap / wind farm

引用本文

导出引用
倪露露, 缪维跑, 李春, 朱海天. 格尼襟翼垂直轴风力机风场研究[J]. 太阳能学报. 2022, 43(2): 365-372 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0217
Ni Lulu, Miao Weipao, Li Chun, Zhu Haitian. INVESTIGATION OF EFFECT OF GURNEY FLAP ON PERFORMANCE OF VERTICAL AXIS WIND TURBINE IN ARRAY CONFIGURATIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 365-372 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0217
中图分类号: TK83   

参考文献

[1] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
BAI J H, XIN S X, LIU J, et al.Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705.
[2] MIAO W P, LI C, PAVESI G, et al.Investigation of wake characteristics of a yawed HAWT and its impacts on the inline downstream wind turbine using unsteady CFD[J]. Journal of wind engineering and industrial aerodynamics, 2017, 168: 60-71.
[3] MIAO W P, LI C, WANG Y B, et al.Study of adaptive blades in extreme environment using fluid-structure interaction method[J]. Journal of fluids and structures, 2019, 91: 102734.
[4] 王渊博, 李春, 缪维跑, 等. 基于全风场功率输出的风力机控制策略研究[J]. 中国电机工程学报, 2017, 37(15): 4437-4445.
WANG Y B, LI C, MIAO W P, et al.Research on the control strategies of the wind turbine based on the total output powers of the global wind farm[J]. Proceedings of the CSEE, 2017, 37(15): 4437-4445.
[5] 缪维跑, 李春, 叶舟, 等. 水平轴风力机组尾迹偏移控制策略研究[J]. 太阳能学报, 2017, 38(1): 23-31.
MIAO W P, LI C, YE Z, et al.The control strategy of wake deviation for two horizontal-axis wind turbines[J]. Acta energiae solaris sinica, 2017, 38(1): 23-31.
[6] 缪维跑, 李春, 阳君. 基于偏航的风力机尾迹偏移控制流动机理研究[J]. 动力工程学报, 2017, 37(8): 655-662.
MIAO W P, LI C, YANG J.Investigation on flow mechanism of a wind farm based on yawed wind tuebine using wake deflection control strategy[J]. Journey of China Society of Power Engineering, 2017, 37(8): 655-662.
[7] BHUTTA M M A, HAYAT N, FAROOQ A U, et al. Vertical axis wind turbine-a review of various configurations and design techniques[J]. Renewable and sustainable energy reviews, 2012, 6(4): 1926-1939.
[8] CHEN W H, CHEN C Y, HUANG C Y, et al.Power output analysis and optimization of two straight-bladed vertical-axis wind turbines[J]. Applied energy, 2017, 185: 223-232.
[9] ZHU H T, HAO W X, LI C, et al.Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap[J]. Journal of wind engineering and industrial aerodynamics, 2019, 86: 17-31.
[10] 朱海天, 郝文星, 李春, 等. 建筑增强型垂直轴风力机气动特性数值研究[J]. 哈尔滨工业大学学报, 2019, 51(1): 93-99.
ZHU H T, HAO W X, LI C, et al.Numerical investigation on aerodynamic characteristic of building augmented vertical axis wind turbine[J]. Journal of Harbin Institute of Technology, 2019, 51(1): 93-99.
[11] SON E, LEE S, HWANG B, et al.Characteristics of turbine spacing in a wind farm using an optimal design process[J]. Renewable energy, 2014, 65: 245-249.
[12] GRAHAM M, MURADIAN A, TRAUB L W.Experimental study on the effect of Gurney flap thickness on airfoil performance[J]. Journal of aircraft, 2017, 3: 1671-1684.
[13] BIANCHINI A, BALDUZZI F, ROSA D D, et al.On the use of Gurney flaps for the aerodynamic performance augmentation of Darrieus wind turbines[J]. Energy conversion and management, 2019, 184: 402-415.
[14] JANG C S, ROSS J C, CUMMINGS R M.Numerical investigation of an airfoil with a Gurney flap[J]. Aircraft design, 1998, 1: 75-88.
[15] ZHU H T, HAO W X, LI C, et al.A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine[J]. Energy, 2018, 165(Part A): 12-25.
[16] LIGNAROLO L E M, RAGNI D, KRISHNASWAMI C, et al. Experimental analysis of the wake of a horizontal-axis wind-turbine model[J]. Renewable energy, 2014, 70: 31-46.
[17] TJIU W, MARNOTO T, MAT S, et al.Darrieus vertical axis wind turbine for power generation I: assessment of Darrieus VAWT configurations[J]. Renewable energy, 2015, 75: 50-67.
[18] DURAISAMY K, LAKSHMINARAYAN V.Flow physics and performance of vertical axis wind turbine arrays[C]// 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, 2014.
[19] AHMADI-BALOUTAKI M, CARRIVEAU R, TING D S-K. A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations[J]. Renewable energy, 2016, 96: 904-913.
[20] ANTONIO P.Wake characterization of coupled configurations of vertical axis wind turbines using Large Eddy Simulation[J]. International journal of heat and fluid flow, 2019, 75: 27-43.
[21] 韩振东. 双垂直轴风力发电机组气动性能优化及其尾流特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
HAN Z D.Investigation of the aerodynamic performance and wake characteristics of twin vertical axis wind turbines[D]. Harbin: Harbin Institute of Technology, 2018.
[22] BARNES A, HUGHES B.Determining the impact of VAWT farm configurations on power output[J]. Renewable energy, 2019, 143: 1111-1120.
[23] CASTELLI M R, ARDIZZON G, BATTISTI L, et al.Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, British Columbia, Canada, 2010: 409-418.
[24] REZAEIHA A, MONTAZERI H, BLOCKEN B, et al.On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines[J]. Energy, 2019, 180: 838-857.
[25] REZAEIHA A, MONTAZERI H, BLOCKEN B.Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: guidelines for azimuthal increment, domain size and convergence[J]. Energy conversion and management, 2017, 156: 301-316.
[26] BALDUZZI F, BIANCHINI A, FERRARA G, et al.Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines[J]. Energy, 2016, 97: 246-261.
[27] ARAYA D B, COLONIUS T, DABIRI J O.Transition to bluff-body dynamics in the wake of vertical-axis wind turbines[J]. Journal of fluid mechanics, 2017, 813: 346-381.

基金

国家自然科学基金(51976131; 51676131); 国家自然基金国际(地区)合作与交流项目(51811530315); 上海市“科技创新行动计划”地方院校能力建设项目(19060502200)

PDF(2956 KB)

Accesses

Citation

Detail

段落导航
相关文章

/