Promoting the large-scale application of mid- /low-temperature energy is an effective way to restructure China's energy supply patterns and achieve the goal of clean, low-carbon and sustainable developments. However, there are currently no perfect statistics and clear special energy planning of the mid- /low-temperature energy resources in China, and thus their developments and utilizations are unclear. Besides, since the mid- /low-temperature energy resources are featured by the low energy grade and low energy density, their developments and utilizations still face intractable problems, such as the difficult obtainment way, single utilization mode, and lack of effective technical route guidance. In China, from the perspective of energy supply and demand matching in current energy structures, this paper comprehensively reviews the annual available amounts, utilization status and development potentials of four typical kinds of the mid- /low-temperature energy resources, including the geothermal energy, solar energy, industrial waste heat and the ocean thermal energy. Afterwards, this paper forecasts the future energy structures and discusses the relevant cutting-edge technologies. It is shown that the annual available exergy amounts of the geothermal energy, solar energy, industrial waste heat, and ocean thermal energy in China is 1.17×1010, 4.90×1010, 4.86×106 and 2.95×109 TJ, respectively, but the current utilization amounts of the mid- /low-temperature energy resources only account for about 3% of the total energy consumptions(1.36×108 TJ in 2017). In the forecast analysis, it is found that the energy utilization proportion of the four typical energy resources rises form 8% to 21% by the year of 2050, which proves the significance of the mid- /low-temperature energy resources and the promising prospect of the related research.
Zhao Jun, Li Yang, Li Hao, Zhong Shengyuan, Ma Ling, Li Wenjia.
MID-/LOW-TEMPERATURE ENERGY IN CHINA[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 250-260 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0227
中图分类号:
TK01
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HENRY A, PRASHER R, MAJUMDAR A.Five thermal energy grand challenges for decarbonization[R]. Nature energy, 2020. [2] IRENA. Global energy transformation: a roadmap to 2050[R]. IRENA, Abu Dhabi, 2018. [3] 高赛赛, 张雪梅, 郭甲生, 等. 分布式能源系统的评价方法[J]. 煤气与热力, 2018, 38(1): 1-5. GAO S S, ZHANG X M, GUO J S, et al.Evaluation methods of distributed energy system[J]. Gas & heat, 2018, 38(1): 1-5. [4] 潘进军, 江滢, 郭鹏, 等. 中国太阳能资源和环境气象因子影响分析[J]. 科技导报, 2014, 32(20): 15-21. PAN J J, JIANG Y, GUO P, et al.Analysis of China's solar energy resources and environmental meteorological factors[J]. Science & technology review, 2014, 32(20): 15-21. [5] 国家发展和改革委员会, 国家能源局, 国土资源部.地热能开发利用“十三五”规划[R]. 北京: 国家发展和改革委员会, 2017. National Development and Reform Commission, National Energy Administration, Ministry of Land and Resources of the People's Republic of China. The 13th FYP for geothermal energy development and utilization[R]. Beijing: National Development and Reform Commission, 2017. [6] 施伟勇, 王传岜, 沈家法, 等. 中国的资源及其开发前景展望[J]. 太阳能学报, 2011, 32(6): 913-923. SHI W Y, WANG C B, SHAN J F, et al.Utilization and prospect of ocean energy resource in China[J]. Acta energiae solaris sinica, 2011, 32(6): 913-923. [7] 熊华文. 中国工业余热利用的政策、现状和潜力[R]. 北京: 国家发展改革委能源研究所, 2016. XIONG H W.Policies for current situation and potential of utilization industrial waste heat and its current situation and potential in China[R]. Beijing: Energy Research Institute of National Development and Reform Commission, 2016. [8] 李四海, 张红, 战栋栋, 等. 槽式太阳能直接产生蒸汽热发电系统分析[J]. 热力发电, 2008(11): 39-43. LI S H, ZHANG H, ZHAN D D, et al.Analysis of exergy in thermal power generation system using steam directly produced from the parabolic trough type solar energy facility[J]. Thermal power generation, 2008(11): 39-43. [9] 李太禄. 中低温地热发电有机朗肯循环热力学优化与实验研究[D]. 天津: 天津大学, 2014. LI T L.Thermodynamic optimization and experimental study on organic rankine cycle for low-and medium-grade geothermal power generation[D]. Tianjin: Tianjin University, 2014. [10] 渠颖. 混合式海洋温差能利用系统及其分析[D]. 天津: 天津大学, 2005. QU Y.Hybrid ocean thermal energy conversion system and exergy analysis[D]. Tianjin: Tianjin University, 2005. [11] 罗向龙, 徐乐, 谭立锋, 等. R245fa有机朗肯循环余热发电系统分析[J]. 节能技术, 2012, 30(2): 131-135. LUO X L, XU L, TAN L F, et al.Exergy analysis of an organic Rankine cycle for waste heat power generation with R245fa[J]. Energy conservation technology, 2012, 30(2): 131-135. [12] 常泽辉, 朱国鹏, 李建业, 等. 接收体对太阳能建筑采暖用聚光器性能影响[J]. 太阳能学报,2019, 40(12):3651-3656. CHANG Z H,ZHU G P, LI J Y, et al.Influences of receiver on concentrator performance of solar building heating system[J]. Acta energiae solaris sinica, 2019, 40(12): 3651-3656. [13] 包予佳. 余热资源品质的热力学可用势评价方法研究[D]. 武汉: 华中科技大学, 2014. BAI Y J.A thesis submitted in partial of fulfillment of the requirements for the degree of master of engineering[D]. Wuhan: Huazhong University of Science and Technology, 2014. [14] GB/T 14909—2005, 能源系统分析技术导则[S]. GB/T 14909—2005, Technical guides for exergy analysis in energy system[S]. [15] 中华人民共和国国家统计局. 国家数据[EB/OL].(2015). http:// www.data.stats.gov.cn/. National Bureau of Statistics of China. National data[EB/OL]. (2015). http:// www.data.stats.gov.cn/. [16] BP. BP 世界能源统计年鉴[EB/OL].https://www.bp.com/zh_cn/ china/ home/ news/ reports/ statistical-review-2018.html, 2018-06. BP. BP Statistical review of world energy [EB/OL].https://www.bp.com/zh_cn/china/home/news/reports/statistical-review-2018.html, 2018-06. [17] 李沁伦, 王璐凯, 刘银河, 等. 300 MW-次再热亚临界燃煤发电站系统改进研究[J]. 西安交通大学学报, 2018, 52(9): 59-68. LI Q L, WANG L K, LIU Y H, et al.Novel system design for a 300 MW single reheat subcritical coal-fired power plant[J]. Journal of Xi'an Jiaotong University, 2018, 52(9): 59-68. [18] 张勇胜, 马晓斌, 刘永刚. 锅炉热效率测试的不确定度分析[J]. 热力发电, 2008(1): 36-40. ZHANG Y S, MA X B, LIU Y G.Analysis of uncertainty in boiler thermal efficiency test[J]. Thermal power generation, 2008(1): 36-40. [19] 宋永臣, 王志国, 刘瑜, 等. 油气田在用燃气轮机系统的热力学分析及改进建议[J]. 天然气工业, 2007(10): 117-119. SONG Y C, WANG Z G, LIU Y, et al.Thermodynamic analysis method and its application on the gas turbine CHP system in oil fields[J]. Natural gas industry, 2007(10): 117-119. [20] 刘俊峰. F级燃气-蒸汽联合循环机组供热经济性分析[J]. 汽轮机技术, 2017, 59(3): 231-233. LIU J F.Economic analysis on heat supply of gas-steam combined cycle unit[J]. Turbine technology, 2017, 59(3): 231-233. [21] ZHENG K Y, DONG Y, CHEN Z H, et al.Speeding up industrialized development of geothermal resources in China-country update report 2010-2014[R]. Melbourne: Proceedings World Geothermal Congress 2015 Melbourne, 2015. [22] ZHU J L, HU K Y, LU X L, et al.A review of geothermal energy resources, development, and applications in China: current status and prospects[J]. Energy, 2015, 93: 466-483. [23] 季杰. 太阳能光热低温利用发展与研究[J]. 新能源进展, 2013, 1(1): 7-31. JI J.Developing and study of low-temperature solar thermal energy conversion applications[J]. Journal of circuits and systems, 2013, 1(1): 7-31. [24] PHILIBERT C, FRANKL P, TAM C, et al.Technology roadmap: solar photovoltaic energy[M]. Paris: International Energy Agency: 2014. [25] SUN T Q, CHENG D L, XU L, et al.Status and trend analysis of solar energy utilization technology[J]. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2019, 354(1): 012010. [26] 胡振广, 金宗勇. 能源转型战略背景下中国太阳能热发电面临的机遇与挑战[J]. 太阳能, 2019(11): 11-17, 20. HU Z G, JIN Z Y.Opportunities and challenges for China's solar thermal power generation under the background of energy transformation strategy[J]. Solar energy, 2019(11): 11-17, 20. [27] 张治国, 王茹玉. 太阳能利用现状和前景分析[J]. 山东工业技术, 2019(3): 96. ZHANG Z G, WANG R Y.Current situation and prospect of solar energy utilization[J]. Shandong industrial technology, 2019(3): 96. [28] 王志峰, 杜凤丽. 2015—2022年中国太阳能热发电发展情景分析及预测[J]. 太阳能, 2019(11): 5-10, 69. WANG Z F, DU F L. Scenario analysis and forecast of China's solar thermal power generation from2015 to 2022[J]. Solar energy, 2019(11): 5-10, 69. [29] ZABIHIAN F, FUNG A S.Review of marine renewable energies: case study of Iran[J]. Renewable and sustainable energy reviews, 2011, 15(5): 2461-2474. [30] 王涛. 实现海洋温差能发电由原理向实际的转换——“十一五”国家科技支撑计划“15千瓦温差能发电装置研究及试验”[J]. 科技成果管理与研究, 2012(11): 90-90. WANG T.Realizing the conversion of marine thermoelectric power generation from principle to practice -“the 11th FYP”national science and technology support plan “research and test of 15 kilowatt thermal power generation equipment”[J]. Management and research on scientific & technological achievements, 2012(11): 90-90. [31] WANG S, YUAN P, LI D, et al.An overview of ocean renewable energy in China[J]. Renewable and sustainable energy reviews, 2011, 15(1): 91-111. [32] FANG H, XIA J, JIANG Y.Key issues and solutions in a district heating system using low-grade industrial waste heat[J]. Energy, 2015, 86: 589-602. [33] 齐添. 迁西县低品位工业余热应用于城镇集中供热[EB/OL].http://www.ceh.com.cn/ztbd/jnjpzk/1037513.shtml,2017-06. QI T.Qianxi County's low-grade industrial waste heat is used in urban district heating[EB/OL].http://www.ceh.com.cn/ztbd/jnjpzk/1037513.shtml, 2017-06. [34] 国家发展改革委能源研究所. 十二五-节能中期评估报告[R]. 北京: 国家发展改革委能源研究所, 2016. Energy Research Institute National Development and Reform Commission. Mid-term evaluation on China's energy conservation target progress of the 12th FYP[R]. Beijing: Energy Research Institute, National Development and Reform Commission, 2016. [35] 中国石油经济技术研究院. 2050世界与中国能源展望[R]. 北京: 中国石油经济技术研究院, 2016. CNPC Economics & Technology Research Institute. 2050 world and China energy outlook[R]. Beijing: CNPC Economics & Technology Research Institute, 2016. [36] IEA. Market report series[R/OL].https://webstore.iea.org/market-report. [37] IEA. Renewables2018-market analysis and forecast from 2018 to 2023[R/OL]. https://www.iea.org/renewables 2018/, 2018-10. [38] 王庆一. 2011能源数据[R]. 能源基金会, 2011. WANG Q Y.2011 energy data[R]. Energy Foundation, 2011. [39] 清华大学建筑节能研究中心, 中国建筑节能年度发展研究报告2017[M]. 北京: 中国建筑工业出版社, 2017: 18-145. Building energy research center of Tsinghua University,China building energy use 2017[M] use 2017[M]. Beijing: China Architecture & Building Press, 2017: 18-145. [40] WANG K, YUAN B, JI G M, et al.A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of petroleum science and engineering, 2018, 168: 465-477. [41] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. XU T F, YUAN Y L, JIANG Z J, et al.Hot dry rock and enhanced geothermal engineering: international experience and china prospect[J]. Journal of Jilin University(earth science edition), 2016, 46(4): 1139-1152. [42] NDIAYE D.Reliability and performance of direct-expansion ground-coupled heat pump systems: issues and possible solutions[J]. Renewable and sustainable energy reviews, 2016, 66: 802-814. [43] WANG K, YUAN B, JI G M, et al.A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of petroleum science and engineering, 2018, 168: 465-477. [44] 李克文, 王磊, 毛小平, 等. 油田伴生地热资源评价与高效开发[J]. 科技导报, 2012, 30(32): 32-41. LI K W, WANG L, MAO X P, et al.Evaluation and efficient development of geothermal resource associated with oilfield[J]. Science & technology review, 2012, 30(32): 32-41. [45] LEWIS N S.Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): 1920. [46] 袁建丽, 金红光, 林汝谋, 等. 太阳能甲醇重整制氢-发电联产系统[J]. 工程热物理学报, 2007, 28(3): 365-368. YUAN J L, JIN H G, LIN R M, et al.Cogeneration system of hydrogen and power with solar methanol reforming[J]. Journal of engineering thermophysics, 2007, 28(3): 365-368. [47] ZHOU L, TAN Y L, WANG J Y, et al.3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature photonics, 2016, 10(6): 393. [48] UEHARA H, IKEGAMI Y, NISHIDA T.Performance analysis of OTEC using a cycle with absorption and extraction process[J]. Journal of JSME, 1998, 64(624): 384-389. [49] KHAN N, KALAIR A, ABAS N, et al.Review of ocean tidal, wave and thermal energy technologies[J]. Renewable and sustainable energy reviews, 2017, 72: 590-604. [50] RAU G H, BAIRD J R.Negative-CO2-emissions ocean thermal energy conversion[J]. Renewable and sustainable energy reviews, 2018, 95: 265-272. [51] ROMANO M S, LI N, ANTIOHOS D, et al.Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications[J]. Advanced materials, 2013, 25(45): 6602-6606. [52] STRAUB A P, YIP N Y, LIN S, et al, Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes[J]. Nature energy, 2016, 1(7): 1-6. [53] LEE S W, YANG Y, LEE H W, et al.An electrochemical system for efficiently harvesting low-grade heat energy[J]. Nature communications, 2014, 5: 3942. [54] ZHANG F, LIU J, YANG W, et al.A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & environmental science, 2015, 8(1): 343-349.