建立太阳能驱动的中空纤维膜液体除湿系统的分析模型,对系统各部件进行分析,分析空气、冷水进口参数和溶液流量对系统性能的影响。结果显示:1)影响系统效率较大的因素是空气进口含湿量、空气流量、冷水温度和冷水流量;2)整个系统中太阳能集热器部件的损最大,可见提高太阳能集热器的性能是提高系统效率的关键。
Abstract
Solar powered hollow fiber membrane liquid dehumidification system is an efficient, energy-saving, renewable and non-contact dehumidification system, which can effectively solve carry-over problem of traditional liquid dehumidification. In the present work, an exergy analysis model of solar powered hollow fiber membrane liquid dehumidification system is developed. The exergy of the component is analyzed. Effect of inlet paraments of air and cold-water, and solution flow rate on the system performance is investigated. The results show that the major factors affecting exergy efficiency of system are inlet air humidity, flow rate of inlet air, temperature of cold-water, and flow rate of cold-water. In the whole system, the biggest part of exergy destruction happens in solar collector. Improving the solar collector performance is the key way to improve the system exergy efficiency.
关键词
太阳能 /
火用 /
空气调节 /
太阳能集热器 /
液体除湿 /
中空纤维膜
Key words
solar energy /
exergy /
air conditioning /
humidity control /
liquid desiccant /
hollow fiber membrane
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李刚, 佘灿明, 池兰, 等. 太阳能溶液除湿空调系统的室内热舒适性模拟[J]. 太阳能学报, 2019, 40(8): 2279-2288.
LI G, SHE C M, CHI L, et al.Indoor thermal comfort simulation of solar energy liquid desiccant air conditioning system[J]. Acta energiae solaris sinica, 2019, 40(8): 2279-2288.
[2] 牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
NIU R P, GENG L Z, FAN Y Y.Application progress of separation membrane on membrane liquid desiccant dehumidification[J]. Materials reports, 2020, 34(15): 15069-15074.
[3] 殷少有, 张宁. 中空纤维膜液体除湿过程中热质传递特性的实验研究[J]. 制冷学报, 2017, 38(3): 96-100.
YIN S Y, ZHANG N.Experimental study on heat and mass transfer characteristics of hollow fiber membrane-based liquid desiccant air dehumidification[J]. Journal of refrigeration, 2017, 38(3): 96-100.
[4] HUANG S M, ZHANG L Z.Researches and trends in membrane-based liquid desiccant air dehumidification[J]. Renewable & sustainable energy reviews, 2013(28): 425-440.
[5] ABDEL-SALAM A H, GE G M, SIMONSON C J. Thermo-economic performance of a solar membrane liquid desiccant air conditioning system[J]. Solar energy, 2014(102): 56-73.
[6] 黄斯珉, 郭晓娟, 杨敏林, 等. 用于液体除湿的椭圆中空纤维膜管束管间传递现象[J]. 化工学报, 2014, 65(2): 538-543.
HUANG S M, GUO X J, YANG M L, et al.Transport phenomena between elliptical hollow fiber membrane tube bank for liquid desiccant air dehumidification[J]. CIESC Journal, 2014, 65(2): 538-543.
[7] SU B S, HAN W, JIN H G.An innovative solar-powered absorption refrigeration system combined with liquid desiccant dehumidification for cooling and water[J]. Energy conversion and management, 2017(153): 515-525.
[8] PENG D G, ZHOU J M, LUO D T.Exergy analysis of a liquid desiccant evaporative cooling system[J]. International journal of refrigeration, 2017, 82: 495-508.
[9] ZHANG Q L, LIU X H, ZHANG T, et al.Performance optimization of a heat pump driven liquid desiccant dehumidification system using exergy analysis[J]. Energy, 2020, 204: 117891.
[10] ZHANG L Z.Conjugate heat and mass transfer in heat mass exchanger ducts[M]. New York: Elsevier Inc., 2014: 181-232.
[11] ZHANG L Z, LI G P.Energy and economic analysis of a hollow fiber membrane-based desalination system driven by solar energy[J]. Desalination, 2017(404): 200-214.
[12] INCROPERA F P, DEWITT D P, Fundamentals of heat and mass transfer[M]. New York: John Wiley & Sons, 2007.
[13] 连之伟. 热质交换原理与设备[M]. 3版. 北京: 中国建筑工业出版社, 2011: 170-174.
LIAN Z W.Fundamentals & equipment of heat &mass transfer[M]. 3rd ed. Beijing: China Architecture & Building Press, 2011: 170-174.
[14] DUFFIE J A, BECKMAN W A, WOREK W M.Solar engineering of thermal processes[M]. 4th ed. Wiley Online Library, 2013: 202-319.
[15] MA L D, LU Z, ZHANG J L, et al.Thermal performance analysis of the glass evacuated tube solar collector with U-tube[J]. Building and environment, 2010, 45(9): 1959-1967.
基金
国家自然科学基金(51566002); 广西自然科学基金(2018GXNSFAA281347); 广西制造系统与先进技术重点实验室基金(19050-44-001Z); 山西自然科学基金(201701D121020)