以H型垂直轴风力机及其内含圆柱形实体为研究对象,对NACA0018翼型的五叶片H型垂直轴风力机的气动性能进行数值模拟和实验验证。分析8种不同直径的内含圆柱体,在内含实体截面积占风轮迎风面积之比分别为21.2%、50.0%和76.9%时,风力机风能利用率的峰值分别下降8.04%、20.7%及74.3%。结果表明:随着内含实体直径的增大,风能利用率的峰值逐渐减小,开始较为缓慢,达到一定值时快速下降。小直径内含实体主要影响叶片在下风区的转矩,对风能利用率的影响较小,而大直径内含实体还会影响叶片在上风区的转矩,其风能利用率迅速减小。对于内含固定直径的实体,比如在现有建筑物外侧安装风力机时,其风轮半径的选择需综合考虑风能利用率和风力机的建造成本两方面的因素。研究结果可为建筑物与垂直轴风力机进行有效结合以提高风能的利用提供参考。
Abstract
Taking H-type Vertical Axis Wind Turbine (VAWT) and its internal cylindrical entity as the research object, the aerodynamic performance of five blade H-type VAWT with NACA 0018 airfoil is studied by numerical simulation and experiment. Eight different diameters of internal cylindrical entity are investigated. It is shown that the peak power coefficient of VAWT decreases by 8.04%, 20.7% and 74.3% when the ratio of the internal cylindrical entity cross-sectional area to the sweep area of the VAWT is 21.2%, 50.0% and 76.9% respectively. The peak value of power coefficient of wind turbine gradually decreases with the increase of the internal entity diameter. It starts slowly, but drops rapidly when the diameter reaches a certain value. It is found that the internal entity with small diameter mainly affects the torque of the blade in the downwind area, and it has little impact on the total power coefficient, while the internal entity with large diameter will also affects the torque of the blade in the upwind area, and the total power coefficient decreases rapidly. For the internal entity with fixed diameter, such as the wind turbine installed outside the existing buildings, the selection of the wind turbine radius should take into account both the factors of power coefficient and construction cost. The research results can provide reference for the effective combination of buildings and VAWT to improve the utilization of wind energy.
关键词
垂直轴风力机 /
风功率 /
气动性 /
数值模拟 /
性能系数 /
风能利用建筑
Key words
vertical axis wind turbines /
wind power /
aerodynamic /
numerical simulation /
coefficient of performance /
building integrated wind turbine
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHOU H, LU Y J, LIU X D, et al.Harvesting wind energy in low-rise residential buildings: design and optimization of building forms[J]. Journal of cleaner production, 2017,167: 306-316.
[2] 左薇, 李惠民, 芮晓明, 等. 风电场典型复杂地形的数值模拟研究[J]. 太阳能学报, 2018, 39(11): 3202-3208.
ZUO W, LI H M, RUI X M, et al.Numerical simulation of typical complex terrain of wind farms[J]. Acta energiae solaris sinica, 2018, 39(11): 3202-3208.
[3] BATTISTI L, BENINI E, BRIGHENTI A, et al.Small wind turbine effectiveness in the urban environment[J]. Renewable energy, 2018, 129(Part A): 102-113.
[4] 艾志刚. 形式随风——高层建筑与风力发电一体化设计策略[J]. 建筑学报, 2009(5): 74-75.
AI Z G.Form follows wind: design tactics for integration of high-rise building and wind-power generation[J]. Architectural journal, 2009(5): 74-75.
[5] 刘蕾. 超高层建筑的绿色设计策略研究[D]. 天津: 天津大学, 2014.
LIU L.The research on green design strategies of ultra high-rise building[D]. Tianjin: Tianjin University, 2014.
[6] TOJA-SILVA F, COLMENAR-SANTOS A, CASTRO-GILM.Urban wind energy exploitation systems: behaviour under multidirectional flow conditions-opportunities and challenges[J]. Renewable and sustainable energy reviews, 2013, 24: 364-378.
[7] MÜLLER G, JENTSCH M F, STODDART E. Vertical axis resistance type wind turbines for use in buildings[J]. Renewable energy, 2009, 34(5): 1407-1412.
[8] FRANCISCO T S, TAKAAKI K, CARLOS P, et al.A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 180: 66-87.
[9] 李秋胜, 李永贵, 陈伏彬, 等. 超高层建筑的风荷载及风能发电应用研究[J]. 土木工程学报, 2011, 44(7): 29-36.
LI Q S, LI Y G, CHEN F B, et al.Wind load on a super tall building and feasibility study of wind power generation[J]. China civil engineering journal, 2011, 44(7): 29-36.
[10] 朱海天, 郝文星, 李春, 等. 风向对建筑增强型垂直轴风力机气动性能的影响[J]. 动力工程学报, 2018, 38(6): 493-500.
ZHU H T, HAO W X, LI C, et al.Effects of wind direction on aerodynamic performance of building augmented vertical axis wind turbines[J]. Journal of Chinese Society of Power Engineering, 2018, 38(6): 493-500.
[11] 赵振宙, 陈潘浩, 陈景茹, 等. 基于双盘面多流管模型的升力型风轮气动性能改善分析[J]. 太阳能学报, 2017, 38(9): 2527-2534.
ZHAO Z Z,CHEN P H, CHEN J R, et al.Research on aerodynamic characteristic of lift type wind turbine based on two-disk multi stream model[J]. Acta energiae solaris sinica, 2017, 38(9): 2527-2534.
[12] 宋晨光, 郑源, 姜镐, 等. 垂直轴风机CFD模拟的网格划分策略和湍流模型研究[J]. 太阳能学报, 2016, 37(8): 2080-2087.
SONG C G, ZHENG Y, JIANG G, et al.Investigation of meshing strategy and turbulence model of CFD simulation of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2016, 37(8): 2080-2087.
[13] 李福林. 直叶型垂直轴风机的变桨距及被动控制装置优化[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LI F L.Investigation on the optimization of variable pitch and passive control device of straight-bladed vertical axis wind turbine[D]. Harbin: Harbin Institute of Technology, 2017.
[14] CHONG W T, MUZAMMIL W K, Wong K H, et al.Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design[J]. Applied energy, 2017, 207: 78-95.
基金
国家自然科学基金(51466001); 广西自然科学基金(2017GXNSFAA198344; 2017GXNSFDA198042); 广西制造系统与先进制造技术重点实验室基金(16-380-12S003)