活化剂种类对生物质活性炭理化特性的影响

秦千惠, 钟菲, 赵晓磊, 陈思苇, 苏静, 牛文娟

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 1-9.

PDF(2922 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2922 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2020-0240

活化剂种类对生物质活性炭理化特性的影响

  • 秦千惠1, 钟菲2, 赵晓磊1, 陈思苇1, 苏静1, 牛文娟1
作者信息 +

EFFECTS OF DIFFERENT ACTIVATORS ON PHYSICOCHMICAL PROPERTIES OF ACTIVATED CARBON FROM BIOMASS

  • Qin Qianhui1, Zhong Fei2, Zhao Xiaolei1, Chen Siwei1, Su Jing1, Niu Wenjuan1
Author information +
文章历史 +

摘要

采用KOH、K2CO3和ZnCl2为活化剂,椰壳、竹子、杨木和棉秆为原材料制备活性炭,研究不同活化剂对生物质热解活化产物及活性炭理化特性的影响。结果表明,KOH活化时,生物质的固液气三相比例均衡,CO体积产量最高,活性炭的表面官能团稳定性最好,骨架破碎,微孔结构发达,微孔面积可达749.90 m2/g。K2CO3活化时,生物质活化气体产率最高,可达68.96%,活性炭介孔结构发达,比表面积、总孔体积最大,分别可达1449.53 m2/g和0.93 cm3/g。ZnCl2活化时,H2体积产量大于40%,活性炭产率最高达48.48%,活性炭的固定碳含量、C转化率、石墨化程度最高,孔洞分布整齐,比表面积和总孔体积低于K2CO3活性炭。

Abstract

Activated carbons are prepared from poplar wood,coconut shell,cotton stalk and bamboo by using KOH, K2CO3 and ZnCl2 as the activators . The effects of different activators on the physicochemical properties of pyrolysis products and activated carbons are investigated. The results show that when KOH is used as the activator,there is a balance in the proportions of three-phase products (gas,liquid,and solid) from the biomass,and the volume yield of CO is the highest;besides,the activated carbon has the highest stability of surface functional groups but with broken skeleton,and exhibits well develop microporous structures (749.90 m2/g). The activation by K2CO3,leads to the highest gas yield(up to 68.96%) of the biomass,and the activated carbon has highly developed mesoporous structures as well as the largest specific surface area (1449.53 m2/g) and total pore volume (0.93 cm3/g). Under the activation by ZnCl2,the volume yield of H2 can exceed 40%,and the yield of activated carbon is the highest (up to 48.48%). In addition,ZnCl2 activation results in the highest fixed carbon content and carbon conversion rate,the activated carbon has smaller specific surface area and total pore volume than obtained under the activation of K2CO3, and exhibits a regular pore distribution and the highest graphitization degree.

关键词

生物质 / 化学活化 / 活性炭 / 活化剂 / 理化特性 / 孔隙结构

Key words

biomass / chemical activation / activated carbon / activators / physicochemical properties / pore structure

引用本文

导出引用
秦千惠, 钟菲, 赵晓磊, 陈思苇, 苏静, 牛文娟. 活化剂种类对生物质活性炭理化特性的影响[J]. 太阳能学报. 2022, 43(2): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0240
Qin Qianhui, Zhong Fei, Zhao Xiaolei, Chen Siwei, Su Jing, Niu Wenjuan. EFFECTS OF DIFFERENT ACTIVATORS ON PHYSICOCHMICAL PROPERTIES OF ACTIVATED CARBON FROM BIOMASS[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0240
中图分类号: S216.2   

参考文献

[1] 张传涛, 邢宝林, 黄光许, 等. 水热炭化-KOH 活化制备核桃壳活性炭电极材料的研究[J]. 材料导报, 2018, 32(4): 1088-1093.
ZHANG C T, XING B L, HUANG G X, et al.Preparation of walnut shell activated carbons via combination of hydrothermal carbonization and KOH activation[J]. Materials review, 2018, 32(4): 1088-1093.
[2] 左宋林, 王永芳, 张秋红. 活性炭作为电能储存与能源转化材料的研究进展[J]. 林业工程学报, 2018, 3(4): 1-11.
ZUO S L, WANG Y F, ZHANG Q H.Activated carbons for the electrochemical storage of energy and electrochemical catalytic conversion of fuels: a review[J]. Journal of forestry engineering, 2018, 3(4): 1-11.
[3] 杨丽娟. 生物质活性炭的制备及应用发展研究[J]. 黑龙江科学, 2018, 9(18): 44-45.
YANG L J.Study on preparation and application development of biomass activated carb[J]. Heilongjiang science, 2018, 9(18): 44-45.
[4] 高银东, 王淑花, 于晓颖, 等. 氯化锌活化棉纤维制备成型活性炭工艺研究[J]. 应用化工, 2019, 48(4): 853-859.
GAO Y D, WANG S H, YU X Y, et al.Preparation of activated carbon from cotton fiber by zinc chloride[J]. Applied chemical industry, 2019, 48(4): 853-859.
[5] 李建生, 高长青, 王雪, 等. 高性能活性炭开发生产中的无机活化剂[J]. 无机盐工业, 2019, 51(8): 1-6.
LI J S, GAO C Q, WANG X, et al.Inorganic activators utilized in development and production of high performance activated carbon[J]. Inorganc chemicals industry, 2019, 51(8): 1-6.
[6] 邹专勇, 周建迪, 杨艳秋, 等. 生物质活性炭制备关键技术与应用现状[J]. 纺织科学与工程学报, 2016, 33(2): 53-57.
ZOU Z Y, ZHOU J D, YANG Y Q, et al.The key technology and application of biomass activated carbon[J]. Journal of textile science and engineering, 2016, 33(2): 53-57.
[7] OKMAN I, KARAGOZ S, TAY T, et al.Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide[J]. Applied surface science, 2014, 293: 138-142.
[8] 王亚非, 于霞, 朱钰, 等. K2CO 3活化制备花椒籽废渣的活性炭及其对对硝基苯酚的吸附性能[J]. 应用化学, 2017, 34(5): 597-605.
WANG Y F, YU X, ZHU Y, et al.Preparation of activated carbon from waste residue of Chinese prickly ash seeds activated with K2CO3 and its adsorption properties for p-n itrophenol[J]. Chinese journal of applied chemistry, 2017, 34(5): 597-605.
[9] 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 3(3): 34-39.
ZHANG B B, LIU Y Q, YE Y Y.Progress in preparation of activated carbon and its activation mechanism[J]. Journal of modern chemical industry, 2014, 3(3): 34-39.
[10] KILIC M, APAYDIN-VAROL E, PUTUN A E.Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4[J]. Applied surface science, 2012, 261: 247-254.
[11] 樊丽华, 王晓柳, 侯彩霞, 等. 灰分对活性炭结构及性能的影响[J]. 炭素技术, 2017, 36(3): 4-8.
FAN L H, WANG X L, HOU C X, et al.The effects of ash on the structure and properties of activated carbons[J]. Carbon techniques, 2017, 36(3): 4-8.
[12] 郭云海, 李军, 金央, 等. 玉米芯活性炭的制备及性能研究[J]. 无机盐工业, 2017, 49(7): 48-51.
GUO Y H, LI J, JIN Y, et al.Preparation and adsorption performance of corncob activated carbon[J]. Inorganc chemicals industry, 2017, 49(7): 48-51.
[13] 范友华, 喻宁华, 邓腊云, 等. 高介孔体积油茶壳活性炭的制备工艺研究[J]. 西北林学院学报, 2019, 34(5): 187-194.
FAN Y H, YU N H, DENG L Y, et al.Preparation of high mesoporous activated carbon from camellia oleifra shell[J]. Journal of Northwest Forestry University, 2019, 34(5): 187-194.
[14] 朱玉雯, 李浩宇, 刘冬冬, 等. 基于活化过程碳烧失特性的孔结构发展机制[J]. 煤炭学报, 2017, 42(12): 3292-3299.
ZHU Y W, LI H Y, LIU D D, et al.Development mechanism of pore structures based on burn-off properties of carbon structures during activation process[J]. Journal of China Coal Society, 2017, 42(12): 3292-3299.
[15] 田龙. 高中孔率木质素基活性炭的制备及表征[J]. 太阳能学报, 2019, 40(3): 877-883.
TIAN L.Optimization and characterization of preparation of lignin activated carbon with high-mesoporpsity[J]. Acta energiae solaris sinica, 2019, 40(3): 877-883.
[16] WANG J, KRISHNA R, YANG T, et al.Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbon[J]. Journal of materials chemistrya, 2016, 4(36): 13957-13966.
[17] YUAN B, WU X F, CHEN Y X, et al.Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading[J]. Environmental cience & technology, 2013, 47(10): 5474-5480.

基金

国家自然科学基金(31701310);中央高校基本科研业务费专项资金(2662020GXPY013)

PDF(2922 KB)

Accesses

Citation

Detail

段落导航
相关文章

/