电网短路故障下双馈风电机组传动链扭振疲劳可靠性分析

仇世龙, 李辉, 龚立娇, 王宾, 柴兆森, 司金冬

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 380-388.

PDF(3551 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3551 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 380-388. DOI: 10.19912/j.0254-0096.tynxb.2020-0254

电网短路故障下双馈风电机组传动链扭振疲劳可靠性分析

  • 仇世龙1, 李辉1,2, 龚立娇1, 王宾1,3, 柴兆森1,2, 司金冬1
作者信息 +

TORSIONAL FATIGUE RELIABILITY ANALYSIS OF DOUBLY-FED WIND TURBINE DRIVETRAIN UNDER POWER GRID WITH SHORT CIRCUIT FAULT

  • Qiu Shilong1, Li Hui1,2, Gong Lijiao1, Wang Bin1,3, Chai Zhaosen1,2, Si Jindong1
Author information +
文章历史 +

摘要

双馈风电机组电气故障扰动引起的电磁转矩波动易造成轴系传动链扭振疲劳,有必要研究电网短路故障对机组传动链扭振疲劳可靠性的影响。首先建立考虑关键部件柔性的传动链有限元模型,通过模态分析获取传动扭振模态。其次基于集中质量法,建立机电耦合模型,以电网短路故障为扰动因素,仿真分析电网短路故障下电磁转矩动态响应。最后将电网短路故障下发电机电磁转矩扰动作为激励,借助ANSYS Designlife平台构建传动链扭振疲劳可靠性模型,分析机组传动链在电网短路故障下电磁转矩波动对扭振疲劳可靠性的影响。结果表明:三相接地故障时电磁转矩波动最剧烈,对传动链的疲劳可靠性影响更大;电网发生短路故障时,电磁转矩中存在低频分量可与高速轴的扭振模态耦合,激发高速轴的扭振,加剧高速轴的疲劳损伤;电磁转矩激发的扭振具有传递效应,越靠近发电机的部件扭振越明显,可靠性越低。

Abstract

The electromagnetic torque fluctuation caused by the electrical fault disturbance of the doubly-fed wind turbine can easily cause torsional vibration fatigue of the shafting drivetrain. It is necessary to study the influence of grid short-circuit fault on the torsional vibration fatigue reliability of the drivetrain of the unit. Firstly, the finite element model of the drivetrain considering the flexibility of key components was established, and the torsional vibration mode was obtained through modal analysis. Secondly, based on the concentrated mass method, an electromechanical coupling model was established, the short-circuit fault of the power grid was used as the disturbance factor, and the dynamic response of the electromagnetic torque under the short-circuit fault of the power grid was simulated and analyzed. Finally, the electromagnetic torque fluctuations generated by the short circuit fault of the power grid were used as the unbalanced excitation source that causes the torsional vibration of the doubly-fed wind turbine drivetrain, the ANSYS Designlife platform was used to construct a torsional fatigue reliability model for the drivetrain and the influence of electromagnetic torque fluctuations on the torsional fatigue reliability of the drivetrain under grid short circuit faults was analyzed. The results show that the electromagnetic torque fluctuation is the most severe when the three-phase ground fault occurs, which has a greater impact on the fatigue reliability of the drivetrain; When there is a short-circuit fault in the power grid, the low-frequency component of the electromagnetic torque can be coupled with the torsional vibration mode of the high-speed shaft to stimulate the torsional vibration of the high-speed shaft and aggravate the fatigue damage of the high-speed shaft. The torsional vibration excited by electromagnetic torque has a transmission effect, and the closer the components to the generator are, the more pronounced the torsional vibration and the lower the reliability.

关键词

风电机组 / 传动链 / 双馈 / 扭振 / 有限元 / 疲劳寿命 / 可靠性

Key words

wind turbines / drivetrain / doubly-fed / torsional / finite element / fatigue life / reliability

引用本文

导出引用
仇世龙, 李辉, 龚立娇, 王宾, 柴兆森, 司金冬. 电网短路故障下双馈风电机组传动链扭振疲劳可靠性分析[J]. 太阳能学报. 2022, 43(2): 380-388 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0254
Qiu Shilong, Li Hui, Gong Lijiao, Wang Bin, Chai Zhaosen, Si Jindong. TORSIONAL FATIGUE RELIABILITY ANALYSIS OF DOUBLY-FED WIND TURBINE DRIVETRAIN UNDER POWER GRID WITH SHORT CIRCUIT FAULT[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 380-388 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0254
中图分类号: TK83   

参考文献

[1] PIERRE T, RENE W, MOHAND O.Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges[J]. Energies, 2014, 7(4): 2595-2630.
[2] 李东东, 陈陈. 风力发电机组动态模型研究[J]. 中国电机工程学报, 2005, 25(3): 115-119.
LI D D, CHEN C.A study on dynamic model of wind turbine generator sets[J]. Proceedings of the CSEE, 2005, 25(3): 115-119.
[3] CHEN L, XU H, WENSKE J.Active damping of torsional vibrations in the drive train of a DFIG wind turbine[J]. Renewable energy and power quality journal, 2014, 1(12): 270-275.
[4] BARAHONA B, CUTULULIS N A, HANSEN A D, et al.Unbalanced voltage faults: the impact on structural loads of doubly fed asynchronous generator wind turbines[J]. Wind energy, 2014, 17(8): 1123-1135.
[5] KOESSLER R J, PILLUTLA S, TRINH L H, et al.Integration of large wind farms into utility grids pt. I-Modeling of DFIG[C]//Power Engineering Society General Meeting, Toronto, ON, Canada, 2003: 1513-1519.
[6] 杜静, 牛兴海, 何玉林, 等. 兆瓦级风力发电机组主轴疲劳分析[J]. 太阳能学报, 2013, 34(4): 591-597.
DU J, NIU X H, HE Y L, et al.Fatigue analysis of mainshaft of MW level wind turbine[J]. Acta energiae solaris sinica, 2013, 34(4): 591-597.
[7] 牛兴海. 风电机组中关键零部件的疲劳分析及应用[D]. 重庆: 重庆大学, 2012.
NIU X H.Fatigue analysis and application of key components in wind turbine[D]. Chongqing: Chongqing University, 2012.
[8] ZHENG J H, MA H R. Optimization design of wind turbine blades based on BLADED[J]. Advanced materials research, 2012, 538-541: 2700-2704.
[9] 熊磊. 大型风力机叶片的疲劳寿命模糊预测方法研究[D]. 重庆: 重庆大学, 2016.
XIONG L.Study on fuzzy prediction method of fatigue life of large wind turbine blade[D]. Chongqing: Chongqing University, 2016.
[10] 金剑华. 风机支撑结构疲劳寿命的有限元研究[J]. 设备管理与维修, 2018(12): 47-48.
JIN J H.Finite element study on fatigue life of fan support structure[J]. Plant maintenance engineering, 2018(12): 47-48.
[11] SHUANG M, SONG B.Reliability analysis of wind turbines under non-Gaussian wind load[J]. The structural design of tall and special buildings, 2017, 27(3): e1443.
[12] 王宏伟. 风电机组传动链扭振建模与寿命损耗分析[D]. 北京: 华北电力大学, 2015.
WANG H W.Study on torsional vibration modeling and life loss of transmission chain of wind turbine[D]. Beijing: North China Electric Power University, 2015.
[13] 马强, 张建杰, 袁亮. 基于ADAMS的齿轮减速器动力学仿真与故障分析[J]. 制造业自动化, 2015, 37(6): 97-99, 106.
MA Q, ZHANG J J, YUAN L.Dynamics simulation and failure analysis of gear reducer based on ADAMS[J]. Manufacturing automation, 2015, 37(6): 97-99, 106.
[14] 仇世龙. 双馈风电机组传动链建模与扭振疲劳损耗研究[D]. 石河子: 石河子大学,2020.
QIU S L.Study on modeling and torsional fatigue loss of doubly-fed wind turbine drivetrain[D]. Shihezi: Shihezi University, 2020.
[15] 邱海飞, 王益轩. 前死心位置处的六连杆开口机构振动分析[J]. 机械传动, 2013, 37(2): 84-86, 96.
QIU H F, WANG Y X.Vibration analysis of front extreme position of six-bar shedding mechanism[J]. Journal of mechanical transmission, 2013, 37(2): 84-86, 96.
[16] 李辉, 仇世龙, 柴兆森,等. 计及齿轮全柔性的风电机组传动链有限元建模及扭振特性分析[J]. 太阳能学报, 2020, 41(3): 80-88.
LI H, QIU S L, CHAI Z S, et al.Finite element modeling and torsional vibration analysis of wind turbine drivetrain considering full flexibility of gears[J]. Acta energiae solaris sinica, 2020, 41(3): 80-88.
[17] 何玉林, 黄伟, 李成武, 等. 大型风力发电机传动链多柔体动力学建模与仿真分析[J]. 机械工程学报, 2014, 50(1): 61-69.
HE Y L, HUANG W, LI C W, et al.Flexible multibody dynamics modeling and simulation analysis of large-scale wind turbine driver train[J]. Journal of mechanical engineering, 2014, 50(1): 61-69.
[18] 杜静, 秦月, 李成武. 风力发电机组传动链动力学建模与仿真分析[J]. 太阳能学报, 2014, 35(10): 1950-1957.
DU J, QING Y, LI C W.Dynamics modeling and simulation analysis of wind turbine drive train[J]. Acta energiae solaris sinica, 2014, 35(10): 1950-1957.
[19] 张盛林, 宋朝省, 翟洪飞, 等. 兆瓦级风电机组传动链动态特性分析[J]. 重庆大学学报(自然科学版), 2015, 38(1): 12-19.
ZHANG S L, SONG C S, ZHAI H F, et al.Dynamic characteristics analysis of megawatt wind turbine drive train[J]. Journal of Chongqing University(natural science edition), 2015, 38(1): 12-19.
[20] 李辉, 王晓, 柴兆森, 等. 电网短路故障下双馈风电机组传动链扭振响应[J]. 电测与仪表, 2019, 56(13): 7-15.
LI H, WANG X, CHAI Z S, et al.Rsional vibration responses of drive train of doubly fed induction generators under grid short circuit faults[J]. Electrical measurement & instrumentation, 2019, 56(13): 7-15.
[21] 王瑞琳. 风力发电机与电网之间扭振相互作用的研究[D]. 上海: 上海交通大学, 2012.
WANG R L.Research on torsional vibration interaction between wind turbine and power grid[D]. Shanghai: Shanghai Jiao Tong University, 2012.
[22] 向大为. 双馈感应风力发电机特殊运行工况下励磁控制策略的研究[D]. 重庆: 重庆大学, 2006.
XIANG D W.Study on excitation control strategy of doubly-fed induction generator under special perating operation mode[D]. Chongqing: Chongqing University, 2006.
[23] DesignLife Theory Guide NC-DL-TH 13.10.001[R]. NC-DL-TH 13.10.001[R]. Darmstadt: HBM United Kingdom, 2018.

基金

国家自然科学基金(51675354)

PDF(3551 KB)

Accesses

Citation

Detail

段落导航
相关文章

/