空气-沙子移动床换热器传热特性实验研究

杨建蒙, 孙源敏, 侯党员, 李斌, 孟繁旭, 陈海生

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 276-281.

PDF(1849 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1849 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 276-281. DOI: 10.19912/j.0254-0096.tynxb.2020-0260

空气-沙子移动床换热器传热特性实验研究

  • 杨建蒙1, 孙源敏1, 侯党员1, 李斌1, 孟繁旭1, 陈海生2
作者信息 +

EXPERIMENTAL STUDY ON HEAT TRANSFER CHARACTERISTICS OF AIR-SAND MOVING BED HEAT EXCHANGER

  • Yang Jianmeng1, Sun Yuanmin1, Hou Dangyuan1, Li Bin1, Meng Fanxu1, Chen Haisheng2
Author information +
文章历史 +

摘要

面向太阳能热发电系统,建立一种空气-沙子移动床换热器实验平台,对其在不同参数下进行传热性能的实验研究。并基于实验数据,利用线性回归拟合得到表观气固传热系数的关联式,其整个实验工况预测值与实验值的平均误差为3.57%。研究结果表明:较高雷诺数可提升空气-沙子移动床换热器的传热效能,空气进口温度为281 ℃时,空气-沙子移动床换热器的固相传热效能可达93.56%。当沙子流量不变时,沙子粒径的变化并不会大幅度影响空气-沙子移动床换热器的换热效果。

Abstract

An experimental platform of air- sand moving bed heat exchanger is established for solar thermal power generation system and the heat transfer performance of air - sand moving bed heat exchanger under different parameters was studied experimentally. Based on the experimental data, the correlation formula of gas-solid heat transfer coefficient is obtained by using linear regression fitting, and the average error between the predicted value and the experimental value of the whole experimental condition is 3.57%. The results show that the higher Reynolds number can improve the heat transfer effectiveness of air-sand moving bed heat exchanger, When the air inlet temperature is 281 ℃, the heat transfer effectiveness of air-sand moving bed heat exchanger can reach 93.56%. When the flow rate of sand is constant, the change of sand particle size will not greatly affect the heat transfer effect of air-sand moving bed heat exchanger.

关键词

太阳能热发电 / 空气-沙子 / 移动床换热器 / 传热效能 / 影响因素 / 实验研究

Key words

solar thermal power generation / air-sand / moving bed heat exchanger / heat transfer effectiveness / influence factors / experimental study

引用本文

导出引用
杨建蒙, 孙源敏, 侯党员, 李斌, 孟繁旭, 陈海生. 空气-沙子移动床换热器传热特性实验研究[J]. 太阳能学报. 2022, 43(2): 276-281 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0260
Yang Jianmeng, Sun Yuanmin, Hou Dangyuan, Li Bin, Meng Fanxu, Chen Haisheng. EXPERIMENTAL STUDY ON HEAT TRANSFER CHARACTERISTICS OF AIR-SAND MOVING BED HEAT EXCHANGER[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 276-281 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0260
中图分类号: O325    TK79   

参考文献

[1] 成昊, 徐丽, 叶芬. 太阳能热发电用储热材料的研究进展[J]. 山东化工, 2019, 48(9): 116-117, 124.
CHENG H, XU L, YE F.Research progress of heat storage materials for solar thermal power generation[J]. Shandong chemical industry, 2019, 48(9): 116-117, 124.
[2] 熊亚选, 吴玉庭, 刘闪威, 等. 低熔点熔盐在槽式太阳能集热中的初步实验研究[J]. 太阳能学报, 2015, 36(1): 173-178.
XIONG Y X, WU Y T, LIU S W, et al.Preliminary experimental study of molten salt at low melting point in trough solar collector[J]. Acta energiae solaris sinica, 2015, 36(1): 173-178.
[3] 张静如, 韦安柱. 熔盐在太阳能热发电中的应用与发展前景[J]. 石油商技, 2017, 35(2): 16-21.
ZHANG J R, WEI A Z.Application and development prospect of molten salt in solar thermal power generation[J]. Petroleum products application research, 2017, 35(2): 16-21.
[4] WARERKAR S, SCHMITZ S, GOETTSCHE J, et al.Air-sand heat exchanger for high-temperature storage[J]. Solar energy engineering, 2011, 133(2): 10101-10107.
[5] INIESTA A C, DIAGO M, DELCLOS T, et al.Gravity-fed combined solar receiver/storage system using sand particles as heat collector, heat transfer and thermal energy storage media[J]. Energy procedia, 2015, 69: 802-811.
[6] MIGUEL D, ALBERTO C I, AUDREY S G, et al.Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology[J]. Applied energy, 2018, 216: 402-413.
[7] 陈冬林, 邹婵, 杜洋, 等. 无管换热器的稳态换热特性[J]. 长沙理工大学学报(自然科学版), 2013, 10(3): 78-84.
CHEN D L, ZOU C, DU Y, et al.Steady-state heat transfer characteristics of tubeless heat exchangers[J]. Journal of Changsha University of Science & Technology(natural science edition), 2013, 10(3): 78-84.
[8] 李恒, 陈冬林, 程松青, 等. 颗粒帘换热器中颗粒空隙率的计算方法与实验研究[J]. 动力工程学报, 2016, 36(12): 970-975, 981.
LI H, CHEN D L, CHENG S Q, et al.Calculation method and experimental study of particle void fraction in particle curtain heat exchanger[J]. Journal of Chinese Society of Power Engineering, 2016, 36(12): 970-975, 981.
[9] 陈冬林, 李恒, 程松青, 等. 颗粒帘换热器中气粒两相流动特性实验[J]. 热力发电, 2016, 45(11): 61-67.
CHEN D L, LI H, CHENG S Q, et al.Experiment on gas-particle two-phase flow characteristics in particle curtain heat exchanger[J]. Thermal power generation, 2016, 45(11): 61-67.
[10] 杨建蒙, 吕美娟, 邢飞, 等. 基于热线法的松散煤体导热系数测量及数值模拟研究[J]. 煤炭科学技术, 2017, 45(11): 149-154.
YANG J M, LYU M J, XING F, et al.Research on thermal conductivity measurement and numerical simulation of loose coal based on hot-wire method[J]. Coal science and technology, 2017, 45(11): 149-154.
[11] LEVENSPIEL O.Engineering flow and heat exchange[M]. New York: Pleum Press, 1998.
[12] 孙晓丽, 鹿院卫, 崔锡民, 等. 单罐熔融盐释热传热规律实验研究[J]. 太阳能学报, 2018, 39(1): 8-13.
SUN X L, LU Y W, CUI X M, et al.Experimental study on heat release and heat transfer of a single pot of molten salt[J]. Acta energiae solaris sinica, 2008, 39(1): 8-13.
[13] 胡道和, 徐德龙, 蔡玉良. 气固过程工程学及其在水泥工业中的应用[M]. 武汉: 武汉理工大学出版社, 2003: 107-123.
HU D H, XU D L, CAI Y L.Gas-solid process engineering and its application in cement industry[M]. Wuhan: Wuhan University of Technology Press, 2003: 107-123.
[14] KAR K K, DYBBS A.Internal heat transfer coefficients of porous metals, in heat transfer in porous media[M]. New York: ASME, 1982: 81-91.
[15] 罗亮. 粉状活性焦在移动床内的传热特性研究[D]. 青岛: 青岛科技大学, 2019.
LUO L.Study on heat transfer characteristics of powdery activated coke in moving bed[D]. Qingdao: University of Science and Technology, 2019.
[16] 王淑香. CO2在螺旋管内流动与传热特性实验研究[D]. 北京: 华北电力大学, 2014.
WANG S X.Experimental study on flow and heat transfer characteristics of CO2 in spiral tube[D]. Beijing: North China Electric Power University, 2014.

PDF(1849 KB)

Accesses

Citation

Detail

段落导航
相关文章

/