三维电解强化木醋液废水可生化性

范庆文, 李岩, 华栋梁, 赵玉晓, 陈雷, 刘素香

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 10-15.

PDF(1689 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1689 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 10-15. DOI: 10.19912/j.0254-0096.tynxb.2020-0264

三维电解强化木醋液废水可生化性

  • 范庆文1, 李岩1,2, 华栋梁1,2, 赵玉晓1,2, 陈雷1,2, 刘素香1,3
作者信息 +

ENHANCED EFFECT OF THREE-DIMENSIONAL ELECTROLYSIS ON BIODEGRADABILITY OF WOOD VINEGAR WASTEWATER

  • Fan Qingwen1, Li Yan1,2, Hua Dongliang1,2, Zhao Yuxiao1,2, Chen Lei1,2, Liu Suxiang1,3
Author information +
文章历史 +

摘要

该文主要研究不同有机负荷发酵条件下废水的毒性作用规律,并考察三维电解技术的解毒效果。实验结果表明,随着有机负荷的升高,产甲烷活性抑制程度逐渐增强且COD去除率急剧降低,在4 g COD/L时产甲烷抑制率达到38.2%。结合高通量测序技术对发酵过程中细菌和古菌进行分析,发现微生物菌群结构发酵前后变化较为明显。而经优化的三维电解条件(电解时间90 min,电压5 V,pH=6,铁炭添加量140 g/L)对木醋液进行预处理后,4 g COD/L木醋液的甲烷产率由223.1 mL/g COD提升至344.2 mL/g COD,而抑制率降至11.2%。三维电解对于改善木醋液的可生化性及提高厌氧发酵效率有较为明显的效果。

Abstract

In this experiment, the toxicity of wastewater under different organic loads is studied, and the detoxification of three-dimensional electrolysis technology is investigated. The experimental results show that with the increase of organic loads, the inhibitory degree of methanogenic activity is gradually enhanced and the COD removal rate is sharply reduced. The inhibition rate of methanogenic process reaches 38.2% at 4 g COD/L. Combining with the high-throughput sequencing technology, the analysis of bacteria and archaea during fermentation reveals that the microbial community structure is significantly affected before and after fermentation. After the pretreatment of wood vinegar by the optimized three-dimensional electrolysis conditions (electrolysis time 90 min, voltage 5 V, pH=6, iron and carbon concentration 140 g/L), the methane yield at 4 g COD/L of wood vinegar increases from 223.1 mL/g COD to 344.2 mL/g COD, and the inhibition rate decreased to 11.2%. In summary, three-dimensional electrolysis has an obvious effect on improving the bioavailability and anaerobic fermentation efficiency of wood vinegar.

关键词

厌氧发酵 / 毒性作用 / 废水处理 / 木醋液 / 三维电解 / 微生物菌群

Key words

anaerobic digestion / toxicity / wastewater treatment / wood vinegar / three-dimensional electrolysis / microbial community

引用本文

导出引用
范庆文, 李岩, 华栋梁, 赵玉晓, 陈雷, 刘素香. 三维电解强化木醋液废水可生化性[J]. 太阳能学报. 2022, 43(2): 10-15 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0264
Fan Qingwen, Li Yan, Hua Dongliang, Zhao Yuxiao, Chen Lei, Liu Suxiang. ENHANCED EFFECT OF THREE-DIMENSIONAL ELECTROLYSIS ON BIODEGRADABILITY OF WOOD VINEGAR WASTEWATER[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 10-15 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0264
中图分类号: X703   

参考文献

[1] TOMMASO G, CHEN W T, LI P, et al.Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae[J]. Bioresource technology, 2015, 178(5): 139-146.
[2] 范庆文, 李岩, 华栋梁, 等. 水热液化废水厌氧处理研究进展[J]. 现代化工, 2020, 40(2): 23-27.
FAN Q W, LI Y, HUA D L, et al.Research status of anaerobic treatment of hydrothermal liquefaction wastewater[J]. Modern chemical industry, 2020, 40(2): 23-27.
[3] SI B C, LI J M, ZHU Z B, et al.Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater[J]. Science of the total environment, 2018, 630: 1124-1132.
[4] ZHENG M X, SCHIDEMAN L C, TOMMASO G, et al.Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of spirulina: toxicity assessment and minimization[J]. Energy conversion & management, 2017, 141: 420-428.
[5] ZHAO C H, MU H, ZHAO Y X, et al.Microbial characteristics analysis and kinetic studies on substrate composition to methane after microbial and nutritional regulation of fruit and vegetable wastes anaerobic digestion[J]. Bioresource technology, 2018, 249: 315-321.
[6] LI Y, ZHANG X D, XU H P, et al.Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: effect of pH[J]. Journal of bioscience and bioengineering, 2019, 128(1): 50-55.
[7] THEAPPARAT Y, CHANDUMPAI A, LEELASUPHAKUL W, et al.Pyroligneous acids from carbonisation of wood and bamboo: their components and antifungal activity[J]. Journal of tropical forest science, 2015, 27(4): 517-526.
[8] RAPOSO F, BORJA R, SÁNCHEZ E, et al. A kinetic evaluation of the anaerobic digestion of two-phase olive mill effluent in batch reactors[J]. Journal of chemical technology & biotechnology, 2010, 80(3): 241-250.
[9] SUN Y J, ZUO J N, LI J P, et al.Analysis of microorganism population in anaerobic granule with molecular bio-techniques[J]. China environmental science, 2006, 26(2): 183-187.
[10] CHEN H, WAN J, CHEN K F, et al.Biogas production from hydrothermal liquefaction wastewater (HTLWW): focusing on the microbial communities as revealed by high-throughput sequencing of full-length 16S rRNA genes[J]. Water research, 2016, 106: 98-107.
[11] WANG D X, HAN H J, HAN Y X, et al.Enhanced treatment of fischer-tropsch (F-T) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: effect of electric field[J]. Bioresource technology, 2017, 232: 18-26.
[12] VON H, SCHNEIDER D, FUSSMANN D, et al.Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria[J]. Scientific data, 2019, 6(1): 163.
[13] JIN Y, YUE Q Y, YANG K L, et al.Pre-treatment of pyridine wastewater by new cathodic-anodic-electrolysis packing[J]. Journal of environmental sciences, 2017, 63: 43-49.

基金

山东省高等学校青年创新团队项目(2019KJD002); 济南市科技计划(201913013); 山东省生物工程技术创新中心重大创新项目(2019JSWGCCXZX002); 山东省自然科学基金(ZR2018LB031)

PDF(1689 KB)

Accesses

Citation

Detail

段落导航
相关文章

/