采用浸渍法制备Ni/CaO、Fe/CaO、Ni-Fe/CaO催化剂,用于生物油模化物乙酸水蒸气催化重整反应。对反应前后催化剂进行BET、H2-TPR、CO2-TPD、XRD等表征。通过比较3种催化剂重整反应性能得出Ni/CaO催化剂具有最佳性能。进一步研究在Ni/CaO催化剂参与下反应温度、水碳比(S/C)、液时空速(LHSV)等因素对气体组分相对含量变化以及收率的影响。实验结果表明,在反应温度800 ℃、S/C=5、LHSV=1.54 h-1时,Ni/CaO催化重整反应性能最佳,氢气收率维持在约85%。结合实验数据和反应前后催化剂表征可知,Ni/CaO催化剂能有效抑制催化剂表面积炭的形成,助剂Fe的添加可提高Ni与Ca-Fe载氧化的相互作用,促进CO的转化。
Abstract
Ni/CaO, Fe/CaO and Ni-Fe/CaO catalysts were prepared by impregnation method. The catalysts were characterized by BET, H2-TPR, CO2-TPD, XRD. By comparing the reforming reactions of different catalysts, it is concluded that Ni/CaO has the best performance. The effects of reaction temperature, steam to carbon S/C, liquid-hour air velocity (LHSV) and other factors on the relative content of gas components and hydrogen yield were studied with the participation of Ni/CaO catalysts. The experimental results show that Ni/CaO catalytic reforming has the best performance when the reaction temperature is 800 ℃, S/C=5 and LHSV=1.54h-1, and the yield of hydrogen was maintained at about 85%. Through the analysis of the experimental results and the catalyst characterization results, it can be seen that the Ni/CaO catalyst can effectively inhibit the formation of carbon deposition on the catalyst surface, and the addition of Fe can improve the interaction between Ni and Ca-Fe oxygen carriers and then promote the conversion of CO.
关键词
生物油 /
乙酸 /
水蒸气重整 /
制氢 /
Ni/CaO催化剂
Key words
bio-oil /
acetic acid /
steam reforming /
hydrogen production /
Ni/CaO catalyst
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蓝平, 许庆利, 蓝丽红, 等. 生物油模型物乙酸水蒸汽催化重整制氢研究[J]. 太阳能学报, 2010, 31(5): 550-555.
LAN P, XU Q L, LAN L H, et al.Study on hydrogen production by steam reforming of acetic acid, a model of bio-oil[J]. Acta energiae solaris sinica, 2010, 31(5): 550-555.
[2] 毛陈, 于凤文, 宋锵, 等. 生物油模型化合物催化热裂解制烃[J]. 太阳能学报, 2018, 39(3): 815-820.
MAO C, YU F W, SONG Q, et al.Bio-oil model compounds co-pyrolysis to prepare hydrocarbons[J]. Acta energiae solaris sinica, 2018, 39(3): 815-820.
[3] 安森萌, 付鹏, 易维明. 乙酸水蒸气重整制氢反应的热力学分析[J]. 太阳能学报, 2013, 34(9): 1526-1530.
AN S M, FU P, YI W M.Thermodynamic analysis of hydrogen production via steam reforming of acetic acid[J]. Acta energiae solaris sinica, 2013, 34(9): 1526-1530.
[4] 从宪玲, 葛博, 赵利民, 等. Ni/Fe-C3N4/Ag复合材料的制备及其光催化性能研究[J]. 聊城大学学报(自然科学版), 2018, 31(3): 12-18.
CONG X L, GE B, ZHAO L M, et al.Synthesis of Ni/Fe-C3N4/Ag composites and their photocatalytic properties[J]. Journal of Liaocheng University(natural science edition), 2018, 31(3): 12-18.
[5] QUAN C, GAO N B, WANG H H, et al.Ethanol steam reforming on Ni/CaO catalysts for coproduction of hydrogen and carbon nanotubes[J]. International journal of hydrogen energy, 2019, 43(3): 1255-1271.
[6] 李宝茹, 殷雪梅, 吴旭, 等. Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究[J]. 燃料化学学报, 2016, 44(8): 993-1000.
LI B R, YIN X M, WU X, et al.Montmorillonite supported Ni-Fe catalysts for hydrogen production from steam reforming of ethanol[J]. Journal of fuel chemistry and technology, 2016, 44(8): 993-1000.
[7] WANG S R, ZHANG F, CAI Q J, et al.Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts[J]. International journal of hydrogen energy, 2015, 40(35): 11406-11413.
[8] ZHAO X Y, XUE Y P, YAN C F, et al.Sorbent assisted catalyst of Ni-CaO-La2O3 for sorption enhanced steam reforming of bio-oil with acetic acid as the model compound[J]. Chemical engineering and processing: process intensification, 2017, 119: 106-112.
[9] 谢华清, 张卫东, 林贺勇, 等. 吸附强化焦油蒸汽重整制取氢气[J]. 化工学报, 2018, 69(S2): 466-472.
XIE H Q, ZHANG W D, LIN H Y, et al.Hydrogen production via sorption-enhanced steam reforming of tar[J]. Journal of chemical industry and engineering, 2018, 69(S2): 466-472.
基金
国家自然科学基金青年基金(21908117); 山东省自然科学基金(ZR2019MB061); 山东省高等学校青年创新团队项目(2019KJD002); 齐鲁工业大学(山东省科学院)青年博士合作基金(2018BSHZ0025)