多参数模型风电机组叶片结冰监测与预警研究

刘庆超, 郭鹏, 张伟, 张银龙, 张勇铭

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 402-407.

PDF(2226 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2226 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 402-407. DOI: 10.19912/j.0254-0096.tynxb.2020-0292

多参数模型风电机组叶片结冰监测与预警研究

  • 刘庆超1, 郭鹏2, 张伟1, 张银龙1, 张勇铭1
作者信息 +

STUDY ON MUTI-PARAMETER MODEL OF WIND TURBINE BLADE ICING DETECTION AND WARNING

  • Liu Qingchao1, Guo Peng2, Zhang Wei1, Zhang Yinlong1, Zhang Yongming1
Author information +
文章历史 +

摘要

详细分析叶片结冰对风电机组运行性能和运行参数的影响,采用功率、叶轮转速和环境温度作为监测叶片结冰的变量。采用高斯过程回归分别建立功率模型和叶轮转速模型实现2个参数的实时监测。引入序贯概率比检验方法分析功率和叶轮转速模型的预测残差以发现2个参数在叶片结冰时的异常变化。当风电机组功率异常、叶轮转速异常且环境温度在0 ℃附近这3个条件同时满足时,发出叶片结冰预警。以云南某高原风场风电机组叶片结冰实际数据为例,验证本文方法的有效性。

Abstract

This paper detailed analyzes the influences of the ice accretion on wind turbine performance and parameters. Output power, rotor speed and ambient temperature are selected as monitoring variables for blade ice accretion. Models are constructed using Gaussian Process Regression (GPR) to timely monitor output power and rotor speed parameters. Sequential Probability Ratio Test (SPRT) is introduced to analyze the predicting residual in order to detect the output power and rotor speed abnormalities. If three conditions including power abnormality, rotor speed abnormality, and ambient temperature near zero Celsius degree occur coincidence, blade icing alarm is triggered. The effectiveness of the proposed method is verified by taking the actual data of blade icing in a plateau wind farm in Yunnan as an example.

关键词

风电机组 / 叶片 / 状态监测 / 结冰 / 多参数模型

Key words

wind turbines / blades / condition monitoring / icing / multi-parameter model

引用本文

导出引用
刘庆超, 郭鹏, 张伟, 张银龙, 张勇铭. 多参数模型风电机组叶片结冰监测与预警研究[J]. 太阳能学报. 2022, 43(2): 402-407 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0292
Liu Qingchao, Guo Peng, Zhang Wei, Zhang Yinlong, Zhang Yongming. STUDY ON MUTI-PARAMETER MODEL OF WIND TURBINE BLADE ICING DETECTION AND WARNING[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 402-407 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0292
中图分类号: TM315   

参考文献

[1] 李宁波, 闫涛, 李乃鹏, 等. 基于SCADA数据的风机叶片结冰检测方法[J]. 发电技术, 2018, 39(1): 58-62.
LI N B, YAN T, LI N P.Ice detection method by using SCADA data on wind turbine blades[J]. Power generating technology, 2018, 39(1): 58-62.
[2] 舒立春, 任晓凯, 胡琴, 等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响[J]. 中国电机工程学报, 2016, 36(21): 5873-5878.
SHU L C, REN X K, HU Q, et al.Influences of environmental parameters on icing characteristics and output power on small wind turbine[J]. Proceedings of CSEE, 2016, 36(21): 5873-5878.
[3] 李大中, 王超, 李颍宁. 基于XGBoost算法的风机叶片结冰状态监测[J]. 电力科学与工程, 2019, 35(9): 43-48.
LI D Z, WANG C, LI Y N.Evaluation of fan icing based on XGBoost algorithm[J]. Electric power science and engineering, 2019, 35(9): 43-48.
[4] 龚妙, 李录平, 刘瑞, 等. 基于运行参数特征的风力机叶片覆冰诊断方法[J]. 动力工程学报, 2019, 39(3): 214-219.
GONG M, LI L P, LIU R, et al.Diagnosis of ice accretion on wind turbine blades based on the features of operating data[J]. Journal of Chinese Society of Power Engineering, 2019, 39(3): 214-219.
[5] MUÑOZCQG, GARCIA M ÁRQUEZ FPG, TOMÁS J M S. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016, 93: 157-163.
[6] SHOJA S, BERBYUK V, BOSTROM A.Guided wave-based approach for ice detection on wind turbine blades[J]. Wind engineering, 2018, 42(5): 483-495.
[7] CHEN N, QIAN Z, NABNEY I T, et al.Wind power forecasts using Gaussian processes and numerical weather prediction[J]. IEEE transactions on power systems, 2014, 29(2): 656-665.
[8] BAI C Z, GUPTA V.An on-line sensor selection algorithm for SPRT with multiple sensors[J]. IEEE transactions on automatic control, 2017, 62(7): 3532-3539.

基金

国家自然科学基金面上项目(51677067)

PDF(2226 KB)

Accesses

Citation

Detail

段落导航
相关文章

/