针对中国大中型面南的水库电站大坝,向光性比较好,具备安装太阳能光伏发电系统的条件,并使得2种可再生能源融合并网发电模式具有一定的创新性。水库电站的发电系统是已建成的,增加太阳能光伏发电系统并建设融合型并网发电系统,不仅体现了投资成本低发电效益高等特点,同时具有节约国土资源、保护大坝和节能减排等社会效益。在设计和实践过程中,研发了水电与太阳能光伏发电共享型控制系统、光伏逆变谐波抑制及无功补偿系统、水电与太阳能光伏发电共享型直流系统等,这些发明设备与技术在实践应用中取得了良好的效果。研究实践表明,太阳能光伏发电与水库水电站融合型并网发电模式,具有很好的推广应用价值。
Abstract
Due to many the large and medium-sized reservoir power station dam facing south in China, which has good phototropism and the conditions to install the solar photovoltaic power generation system, it is possible to integrate two renewable energy grid connected power generation mode. The power generation systems of reservoir power station are belong to built up. Only adding solar photovoltaic power generation systems and building integrated grid connected power generation systems not only reflect the characteristics of low investment cost and high power generation efficiency, but also have the social benefits such as saving land and resources, protecting dam and energy conservation and emission reduction. In the process of design and practice, the shared control system of hydropower and solar photovoltaic power generation, the photovoltaic inverter harmonic suppression and reactive power compensation system, and the shared DC system of hydropower and solar photovoltaic power generation have been developed. These systems have achieved good results in practice. Research and practice show that the integration of solar photovoltaic power generation and reservoir hydropower station grid connected power generation mode has good application value.
关键词
水库 /
大坝 /
水电站 /
太阳能光伏发电 /
并网发电系统
Key words
reservoir /
dam /
hydropower station /
solar photovoltaic power generation /
grid connected power generation system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢嘉, 桑成松, 马勇, 等. 新能源供电多能互补发电系统设计[J]. 南京理工大学学报, 2020, 44(4): 501-510.
XIE J, SANG C S, MA Y, et al.Design of multi-energy complementary power generation system for new energy supply[J]. Journal of nanjing university of science and technology, 2020, 44(4): 501-510.
[2] 石荣亮, 张兴, 刘芳, 等. 基于虚拟同步发电机的多能互补微网运行控制技术[J]. 太阳能学报, 2017, 38(7): 1869-1876.
SHI R L, ZHANG X, LIU F, et al.Multipurpose complementary microgrid operationcontrol technology based on virtual synchronousgenerator[J]. Journal of solar energy, 2017, 38(7): 1869-1876.
[3] 王子琳, 鲁玺, 庄明浩, 等. 中国三北地区风-光互补发电系统空间优化研究[J]. 全球能源互联网, 2020, 3(1): 97-104.
WANG Z L, LU X, ZHUANG M H, et al.Spatial optimization of wind-PV hybrid energy systems for the three-north region in china[J]. Journal of global energy interconnection, 2020, 3(1): 97-104.
[4] 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41(03): 220-230.
ZHANG Z Y, JU X, PAN X Y, et al.Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power generation technology, 2020, 41(3): 220-230.
[5] 王立舒, 冯广焕, 张旭, 等. 聚光太阳能光伏-温差热复合发电系统设计与性能测试[J]. 农业工程学报, 2018, 34(15): 246-254.
WANG L S, FENG G H, ZHANG X, et al.Design and performance test of concentration solar PV/TE compound power generation system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 246-254.
[6] 初永玲, 李绍春. 关于光伏发电系统跟踪太阳聚光发电优化控制[J]. 电子器件, 2019, 42(2): 68-72.
CHU Y L, LI S C.Optimized control of tracking solar concentrating power generation about PV system[J]. chinese journal of electron devices, 2019, 42(2): 68-72.
[7] 王兆安, 杨君, 刘进军, 等. 谐波抑制和无功功率补偿[M]. 北京: 机械工业出版社, 2005.
WANG Z A,YANG J,LIU J J, et al.Harmonic reduction and compensation for reactive power[M]. Beijing: Machine Press, 2005.
[8] 徐金寿, 张仁贡. 水电站计算机监控技术与应用[M]. 杭州: 浙江大学出版社, 2011.
XU J S, ZHANG R G.Computer monitoring technology and its application[M]. Hangzhou: Zhejiang University Press, 2011.
[9] 苑宾, 梅念, 陈东, 等. 三次谐波注入对MMC运行特性的影响[J]. 高电压技术, 2020, 46(3): 1059-1068.
YUAN B, MEI N, CHEN D, et al.Influences of third harmonic injection on the operation characteristics of MMC System[J]. High voltage engineering, 2020, 46(3): 1059-1068.
[10] 汪玉凤, 王君. 电流前馈控制的光伏并网和APF统一控制策略[J]. 辽宁工程技术大学学报(自然科学版), 2020, 42(1): 64-70.
WANG Y F, WANG J.Photovoltaic grid-connected and APF unified control strategy for current feedforward control[J]. Journal of Liaoning Technical University(natural science), 2020,42(1): 64-70.
[11] 葛鹏, 张亚亚, 吴馥郁, 等. 基于双闭环的混合储能直流微电网稳定控制策略[J]. 黑龙江电力, 2019, 41(4): 41-45.
GE P, ZHANG Y Y, WU F Y, et al.Control strategy for stability of hybrid energy storage DC micro-grid based on double closed-loop[J]. Heilongjiang electric power, 2019, 41(4): 41-45.
[12] 郭小江, 郭剑波, 王成山. 考虑直流输电系统外特性影响的多直流馈入短路比实用计算方法[J]. 中国电机工程学报, 2015, 35(9): 2143-2151.
GUO X J, GUO J B, WANG C S.Practical calculation method for multi-infeed short circuit ratio influenced by characteristics of external characteristics of DC system[J]. Proceedings of the CSEE, 2015, 35(9): 2143-2151.
基金
浙江省属高校基本科研业务费(FRF20PY007); 浙江省重点科技创新团队项目(2012R10022-09)