建筑室内人体太阳辐射得热特性及数值模拟

袁宸章, 李念平, 何颖东, 阿勇嘎, 陆美瑶, 黄晨昱

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 296-302.

PDF(1991 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1991 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 296-302. DOI: 10.19912/j.0254-0096.tynxb.2020-0324

建筑室内人体太阳辐射得热特性及数值模拟

  • 袁宸章1, 李念平1, 何颖东2, 阿勇嘎1, 陆美瑶1, 黄晨昱1
作者信息 +

THERMAL CHARACTERISTICS AND NUMERICAL SIMULATION OF SOLAR RADIATION ON HUMAN BODY IN BUILDINGS

  • Yuan Chenzhang1, Li Nianping1, He Yingdong2, A Yongga1, Lu Meiyao1, Huang Chenyu1
Author information +
文章历史 +

摘要

太阳辐射对建筑室内人体热舒适和建筑能耗有着显著影响。通过实测验证了daylight coefficient(DC)算法模拟太阳辐射强度的准确性。随后基于假人仿真模型采用DC算法计算室内人体平均辐射温度增量(Δ),与SolarCal(SC)算法结果作对比,并对SC算法进行改进。相比原SC算法,改进SC算法与DC算法计算散射辐射ΔMRT最大差值从4.66 ℃优化到0.92 ℃。然后通过改进SC算法数值模拟案例分析了建筑室内人体全年太阳辐射得热特性,为评估被动太阳能建筑性能及改进暖通空调系统参数调控提供参考。

Abstract

Solar radiation has a significant effect on indoor thermal comfort and building energy consumption. In this study, the accuracy of daylight coefficient(DC) method was verified through experiment. Then, the DC method was used to calculate the increment of mean radiant temperature of a manikin(ΔMRT), and the result was compared with the original SolarCal(SC) method. Afterwards, the revised SC method was proposed to calculate the solar heat gain of the manikin, and compared with the result by the DC method. The calculated results indicate that the maximum difference of diffuse ΔMRT between the revised SC and DC method is optimized from 4.66 ℃ to 0.92 ℃. Further, in this study, the revised SC method was used to analyze the solar heat gain of the human body in the building throughout the year. This study provides some reference for the evaluation of passive solar buildings and the parametric optimization of building HVAC systems.

关键词

太阳辐射 / 数值模拟 / 被动式太阳能建筑 / ΔMRT / Daylight Coefficient算法 / SolarCal算法

Key words

solar radiation / numerical simulation / passive solar building / ΔMRT / Daylight Coefficient (DC) method / SolarCal(SC) method

引用本文

导出引用
袁宸章, 李念平, 何颖东, 阿勇嘎, 陆美瑶, 黄晨昱. 建筑室内人体太阳辐射得热特性及数值模拟[J]. 太阳能学报. 2022, 43(2): 296-302 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0324
Yuan Chenzhang, Li Nianping, He Yingdong, A Yongga, Lu Meiyao, Huang Chenyu. THERMAL CHARACTERISTICS AND NUMERICAL SIMULATION OF SOLAR RADIATION ON HUMAN BODY IN BUILDINGS[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 296-302 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0324
中图分类号: P422.1   

参考文献

[1] 冯国会, 梁若冰, 宁经洧, 等. 太阳辐射对人体热舒适性的影响分析[J]. 沈阳建筑大学学报(自然科学版), 2007, 23(5): 790-793.
FENG G H, LIANG R B, NING J W,et al.The analysis of the impact of solar radiation through windows on human thermal comfort[J]. Journal of Shenyang Jianzhu University(natural science edition), 2007, 23(5): 790-793.
[2] 赵康, 桂雪晨, 葛坚. 高大空间中太阳辐射对热舒适的影响及室内参数设计[J]. 太阳能学报, 2019, 40(9): 2655-2662.
ZHAO K,GUI X C,GE J.Influence of solar radiation on thermal comfort in large space and corrresponding design of indoor parameters[J]. Acta energiae solaris sinica, 2019, 40(9): 2655-2662.
[3] HODDER S G,PARSONS K.The effects of solar radiation on thermal comfort[J]. International journal of biometeorology, 2007, 51(3): 233-250.
[4] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告(2018)[M]. 北京: 中国建筑工业出版社, 2018: 132-183.
Tsinghua University Building Energy Conservation Research Center. Annual development report of building energy efficiency in China(2018)[M]. Beijing: China Architecture & Building Press, 2018: 132-183.
[5] 刘国丹, 李潇斐, 王志欣,等. 基于太阳辐射影响的室内热环境特性[J]. 暖通空调, 2019, 49(11): 132-139,161.
LIU G D, LI X F, WANG Z X, et al.Indoor thermal environment characteristics based on solar radiation[J]. Heating ventilating and air conditioning, 2019, 49(11): 132-139, 161.
[6] LAGENNUSA M, NUCARA A,PIETRAFESA M,et al.A model for managing and evaluating solar radiation for indoor thermal comfort[J]. Solar energy, 2007, 81(5): 594-606.
[7] MARINO C, NUCARA A, PIETRAFESA M.Mapping of the indoor comfort conditions considering the effect of solar radiation[J]. Solar energy, 2015, 113: 63-77.
[8] ARENS E, HOYT T, ZHOU X, et al.Modeling the comfort effects of short-wave solar radiation indoors[J]. Building and environment, 2015, 88: 3-9.
[9] ASHRAE. Thermal environmental conditions for human occupancy: ASHRAE standard 55-2017[S]. Atlanta: ASHRAE Inc, 2017: 22-29.
[10] ZANI A, MAININI A G, BLANCO C J D,et al. A new modeling approach for the assessment of the effect of solar radiation on indoor thermal comfort[C]//Proceedings of the 2018 Building Performance Analysis Conference and SimBuild, Chicago, IL, US, 2018.
[11] BOURGEOIS D, REINHART C F, WARD G.Standard daylight coefficient model for dynamic daylighting simulations[J]. Building research & information, 2008, 36(1): 68-82.
[12] FERNANDES L L, LEE E S, MCNEIL A, et al.Angular selective window systems: Assessment of technical potential for energy savings[J]. Energy and buildings, 2015, 90: 188-206.
[13] MARDALJEVIC J.Daylight simulation: Validation, sky models and daylight coefficients[D]. Leicester: De Montfort University, 2000.

基金

国家自然科学基金(51878255)

PDF(1991 KB)

Accesses

Citation

Detail

段落导航
相关文章

/