通过建立Matlab/Simulink仿真模型求解Cummins方程,计算摆式波能发电装置在不规则波中的瞬时功率和平均功率,同时考虑线性和非线性动力摄取系统的影响。线性假设下的数值结果与试验数据的对比验证目前数值模型的精度。进一步使用摆板-液压系统联合仿真模型研究液压式转换装置中不同影响因素对发电功率的影响,发现液压系统中活塞面积存在最优值使得装置在给定海况下的发电量最大化。
Abstract
The instantaneous power and average power of the flap-type wave energy converter in irregular waves were calculated in MATLAB/Simulink to solve the Cummins equation. The effects of linear and nonlinear power intake systems were considered in analysis. The comparison between the numerical results under the linear assumption and the experimental data verifies the accuracy of the present numerical model. The influence of different hydraulic parameters on the electrical generation was studied using flap-hydraulic model. It can be concluded that there is optimum value of piston area to achieve maximum electrical power in specified wave condition.
关键词
波浪能 /
数值模型 /
非线性系统 /
摆式 /
瞬时功率 /
平均功率
Key words
wave energy /
numerical models /
nonlinear systems /
flap-type /
instantaneous power /
average power
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张中华, 夏增艳, 黄勇, 等. 离岸摆式波浪能发电技术综述[J]. 太阳能学报, 2012, 33(S1): 152-155.
ZHANG Z H, XIA Z Y, HUANG Y, et al.Overview of offshore surging wave energy power generation technologies[J]. Acta energiae solaris sinica, 2012, 33(S1): 152-155.
[2] 张亚群, 于龙飞, 盛松伟, 等. 液压式波浪能装置能量转换系统研究[J]. 太阳能学报, 2014, 35(10): 2071-2076.
ZHANG Y Q, YU L F, SHENG S W, et al.Research of power take-off system of hydraulic wave energy converter[J]. Acta energiae solaris sinica, 2014, 35(10): 2071-2076.
[3] CUMMINS W E.The impulse response function and ship motions[J]. Schiffstechnik, 1962(9): 101-109.
[4] 李松剑, 潘卫明, 刘靖飙, 等. 浮力摆式波浪能发电装置时域研究[J]. 太阳能学报, 2017, 38(2): 543-550.
LI S J, PAN W M, LIU J B, et al.Time-domain research of buoyant pendulum wave energy generation converter[J]. Acta energiae solaris sinica, 2017, 38(2): 543-550.
[5] YU Y H, LI Y, HALLETT K, et al.Design and analysis for a floating oscillating surge wave energy converter[C]//Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering,San Francisco,USA,2014.
[6] SUN L, EATOCK TAYLOR R, TAYLOR P H.Wave driven free surface motion in the gap between a tanker and an FLNG barge[J]. Applied ocean research, 2015, 51: 331-349.
[7] SO R, SIMMONS A,BREKKEN T, et al.Development of PTO-Sim: A power performance module for the open-source wave energy converter code WEC-Sim[C]//Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland,Canada, 2015.
[8] VAN'T HOFF J. Hydrodynamic modelling of the oscillating wave surge converter[D]. Belfast: Queen's University Belfast, 2009.
基金
国家重点研发计划可再生能源与氢能技术重点专项(2018YFB1501904); 国家自然科学基金(51961125103); 中央高校基本科研业务费专项(2018IVA029)