封闭阳台温差修正系数取值及其对供暖设计的影响

马梦茹, 张华玲

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 303-310.

PDF(1587 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1587 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 303-310. DOI: 10.19912/j.0254-0096.tynxb.2020-0360

封闭阳台温差修正系数取值及其对供暖设计的影响

  • 马梦茹, 张华玲
作者信息 +

VALUE OF TEMPERATURE DIFFERENCE CORRECTION FACTOR OF CLOSED BALCONY AND ITS INFLUENCE ON HEATING DESIGN

  • Ma Mengru, Zhang Hualing
Author information +
文章历史 +

摘要

封闭式阳台作为居住建筑延伸空间,是被动式附加阳光间的一种形式。该文通过分析封闭阳台型式、围护结构热工性能、太阳辐射强度、外遮阳等因素对阳台温差修正系数α的影响,推荐给出严寒、寒冷、夏热冬冷地区代表城市居住建筑不同型式封闭阳台适用于工程应用的温差修正系数简便计算公式,为准确评估封闭阳台这类附加阳光间对供暖房间增益效果提供依据。分别采用该文推荐公式计算α值、现行规范建议值0.7,计算代表城市居住建筑封闭阳台的温度、分隔封闭阳台与供暖房间的围护结构耗热量(该文中简称“内围护结构”)以及建筑供暖设计负荷,并发现满足现行节能规范的居住建筑封闭阳台温度均高于α取0.7对应的设计计算温度,阳台温度不都能达到现行热工规范要求的12 ℃,指出不同现行规范对应条款衔接还存在不足;同时,内围护结构耗热量差异率高达42%~81%,建筑供暖设计负荷差异率也达到12%~22%,按规范建议的0.7计算会增大供暖房间末端设备与建筑供暖系统热源容量,会导致房间过热,热源设备低负荷运行时间延长,投资与能耗增加。

Abstract

Acting as the extension space of residential buildings, closed balcony is a kind of passive attached sunspace. In this paper, by analyzing the factors influencing on closed balcony temperature, such as the closed balcony type, the thermal performance of the enclosure structure, the solar radiation intensity and the external shading, the simple calculation formulas of the temperature difference correction factor of closed balconies of residential buildings in the severe cold zone, cold zone, hot summer and cold winter zone was recommended. The formulas are suit for the engineering application and provide the basis for evaluating the room heating gain effect by the attached sunspace of the closed balcony. The temperature difference correction factors based on the formulas to calculate α value and a fixed α value 0.7 recommended by the current code were used to calculate the closed balcony temperature, the heat consumption of the interior enclosure structure, and the design load of a residential building heating in the typical cities. It is found that all of closed balcony temperature meeting the current energy saving code are higher than the balcony temperature calculated by using the temperature difference correction factor of 0.7, and not all balcony temperatures can reach to 12 ℃ required by the current code of thermal design of civil buildings. It is shown that there are still some deficiencies in the connection of corresponding clauses in different current codes. The difference rate of heat consumption of interior enclosure structure is up to 42%-81%, and the difference rate of the building heating design load is also up to 12%-22%. The heating load calculated by 0.7 recommended by the current code will result in increasing of the capacity of the end equipment in the heating room and the heat source capacity in the building heating system. This will lead to the overheating of the room, the longer time in low load operation of the heat source equipment, the higher investment and energy consumption.

关键词

居住建筑 / 供暖负荷 / 太阳辐射 / 温差修正系数 / 封闭阳台

Key words

residential buidings / thermal load / solar radiation / temperature difference correction factor / closed balcony

引用本文

导出引用
马梦茹, 张华玲. 封闭阳台温差修正系数取值及其对供暖设计的影响[J]. 太阳能学报. 2022, 43(2): 303-310 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0360
Ma Mengru, Zhang Hualing. VALUE OF TEMPERATURE DIFFERENCE CORRECTION FACTOR OF CLOSED BALCONY AND ITS INFLUENCE ON HEATING DESIGN[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 303-310 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0360
中图分类号: TK511+.2   

参考文献

[1] 邹广宇. 东北村镇住宅附加阳光间式被动太阳房优化策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
ZOU G Y.Research on optimizing design strategy of additional passive solar house in northeast of China[D]. Harbin: Harbin Institute of Technology, 2016.
[2] GB 50736—2012, 民用建筑供暖通风与空气调节设计规范[S].
GB 50736—2012, Design code for heating ventilation and air conditioning of civil buildings[S].
[3] 董重成, 李岩. 北方住宅建筑封闭阳台温差修正系数的确定[J]. 暖通空调, 2007, 37(12): 97-100.
DONG Z C, LI Y.Determination of temperature difference correction factor of closing balcony for residential buildings in Northern China[J]. Journal of HV&AC, 2007, 37(12): 97-100.
[4] 李岩. 不采暖建筑空间温差修正系数的研究[D]. 哈尔滨: 哈尔滨工业大学, 2005.
LI Y.Study on temperature difference correction factor in non-heating building space[D]. Harbin: Harbin Institute of Technology, 2005.
[5] 高涛, 史厚丽, 熊伟. 某地封闭阳台围护结构温差修正系数的实验研究[J]. 湖南工程学院学报(自然科学版), 2009, 19(2): 86-89.
GAO T, SHI H L, XIONG W.Experimental study on correction coefficient of temperature deviation of enclosed balcony structure in an area[J]. Journal of Hunan Institute of Engineering(natural science edition). 2009, 19(2): 86-89.
[6] 袁伟, 张雪玲, 司鹏飞. 北方地区居住建筑封闭阳台温差修正系数研究[J]. 暖通空调, 2014, 44(6): 71-76.
YUAN W, ZHANG X L, SI P F.Closed balcony temperature difference correction factor for residential buildings in the Northern[J]. Journal of HV&AC, 2014, 44(6): 71-76.
[7] 肖先波, 曹毅然, 李德荣, 等. 夏热冬冷地区水平遮阳板深度与建筑能耗之间的关系[J]. 工业建筑, 2014, 44(4): 49-51.
XIAO X B, CAO Y R, LI D R, et al.Relationship between the depth of horizontal shading board and building energy consumption in hot summer and cold winter zone[J]. Journal of industrial architecture. 2014, 44(4): 49-51.
[8] 董凯, 赖俊英, 钱晓倩, 等. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版). 2016, 50(8): 1431-1437.
DONG K, LAI J Y, QIAN X Q, et al.Energy efficiency of residential buildings with horizontal external shading in hot summer and cold winter zone[J]. Journal of Zhejiang University (engineering science edition), 2016, 50(8): 1431-1437.
[9] 陈明东, 史宇亮, 刘学兵. 附加阳光间型被动式太阳房供暖实验研究[J]. 太阳能学报, 2012, 33(6): 944-947.
CHEN M D, SHI Y L, LIU X B.Heating study of passive solar house with sunspace[J]. Acta energiae solaris sinica, 2012, 33(6): 944-947.
[10] GIUSEPPE O, NATALE A, MARILENA D S, et al.Solar heat gains and operative temperature in attached sunspaces[J]. Renewable energy, 2012, 39(1): 241-249.
[11] GRUDZINSKA M.Glazed balconies as passive greenhouse systems-potential of their use in Poland[J]. Building services engineering research and technology, 2016, 37(5): 555-572.
[12] JGJ 26—2018, 严寒和寒冷地区居住建筑节能设计标准[S].
JGJ 26—2018, Design standard for energy efficiency of residential buildings in freezing cold winter region[S].
[13] JGJ 134—2010, 夏热冬冷地区居住建筑节能设计标准[S].
JGJ 134—2010, Design standard for energy efficiency of residential buildings in hot summer and cold winter zone[S].
[14] 中国气象局气象信息中心气象资料室; 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005: 20-22.
Meteorological Information Center, China Meteorological Administration; Department of Building Technology And Science, Tsinghua University. Special meteorological data set for building thermal environment analysis in China[M]. Beijing: China Building Industry Press, 2005: 20-22.
[15] 卢志强, 凌继红, 秦晓娜, 等. 天津市医院建筑能耗影响因素的偏相关分析[J]. 建筑科学, 2012, 28(8): 5-8.
LU Z Q, LING J H, QIN X N, et al.Partial correlation analysis on factors influencing the energy consumption of hospital buildings in Tianjin[J]. Building science, 2012, 28(8): 5-8.
[16] GB 50176—2016, 民用建筑热工设计规范[S].
GB 50176—2016, Thermal design code for civil building[S].

基金

国家重点研发计划(2018YFD1100704)

PDF(1587 KB)

Accesses

Citation

Detail

段落导航
相关文章

/