该文旨在确定影响油松固体燃料物理性能的因素,并优化优质油松固体燃料对应的参数组合。通过单因素试验研究颗粒度、温度、含水率、压力对油松固体燃料物理特性,如密度、耐久性、抗跌碎性的影响规律,并通过满意度函数法对三因素三水平响应面结果进行多响应优化。结果表明,当颗粒度为0.16~1.25 mm、温度为90~130 ℃、含水率为4%~9%、压力为70~110 MPa时,可成型质量优良的油松固体燃料。对于颗粒度为0.16~0.63 mm的油松原料,三响应优化结果为:温度130 ℃、含水率5.15%、压力96.88 MPa,此条件下固体燃料密度、耐久性、抗跌碎性分别达到1.089 g/cm3 、99.33%、99.79%。颗粒度、温度、含水率、压力对油松固体燃料物理性能影响显著。
Abstract
It is an effective transformation method to use Pinus tabulaeformis waste as fuel. The purpose of this paper is to determine the factors affecting the physical properties of Pinus tabulaeformis solid fuel and to optimize the corresponding combination of parameter for high quality Pinus tabulaeformis solid fuel. The effects of particle size, temperature, water content and pressure on the physical properties (density, durability and impact resistance) of Pinus tabulaeformis solid fuel were studied by single factor experiment, and three factors and three levels response surface were optimized by Desirability Functions method. The final results show that when the particle size is 0.16-1.25 mm, the temperature is 90-130 ℃, the water content is 4%-9%, and the pressure is 70-110 MPa, the solid fuel with good quality can be formed. For Pinus tabulaeformis with particle size of 0.16-0.63 mm, the three response optimization results are as follows: temperature 130 ℃, water content 5.15%, pressure 96.88 MPa. Under these conditions, the density, durability and impact resistance of solid fuel is 1.089 g/cm3, 99.33% and 99.79% respectively. Particle size, temperature, water content and pressure have significant influence on the physical properties of Pinus tabulaeformis solid fuel.
关键词
生物质固体 /
成型 /
优化 /
油松 /
废弃物利用 /
满意度函数
Key words
biosolids /
molding /
optimization /
Pinus tabulaeformis /
waste utilization /
desirability functions
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 宁晓雨. 山西油松资源利用与保护[C]//第十一届全国经济管理院校工业技术学研究会论文集, 中国西安2012.
NING X Y.Utilization and protection of Shanxi Pinus tabulaeformis resources[C]//The Eleventh National Economic Management Institute of Industrial Technology Research Proceedings, Xi'an, China, 2012.
[2] 李庆华, 曹扬, 陈云明, 等. 陕西油松人工林下枯落物层生物量及其碳储量[J]. 水土保持研究, 2013, 20(4): 24-28.
LI Q H, CAO Y, CHEN Y M, et al.Litter mass and carbon storage in the Pinus tabulaeformis plantations in Shaanxi province[J]. Research of soil and water conservation, 2013, 20(4): 24-28.
[3] 王功亮, 姜洋, 李伟振, 等. 基于响应面法的玉米秸秆成型工艺优化[J]. 农业工程学报, 2016, 32(13): 223-227.
WANG G L, JIANG Y, LI W Z, et al.Process optimization of corn stover compression molding experiments based on response surface method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 223-227.
[4] 刘正光. 谷秆固体燃料物理性能及燃烧特性研究[D]. 晋中: 山西农业大学, 2018.
LIU Z G.Study on physical properties and combustion characteristics of straw stalk solid fuel[D]. Jinzhong: Shanxi Agricultural University, 2018.
[5] ZHANG J, GUO Y M.Physical properties of solid fuel briquettes made from Caragana korshinskii Kom[J]. Powder technology, 2014, 256: 293-299.
[6] ZHANG J, ZHENG D C, WU K, et al.The optimum conditions for preparing briquette made from millet bran using generalized distance function[J]. Renewable energy, 2019, 140: 692-703.
[7] THEERARATTANANOON K, XU F, WILSON J, et al.Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem[J]. Industrial crops & products, 2011, 33(2): 325-332.
[8] 刘平, 于磊, 李仁平, 等. 辽东山区油松建筑材林立地质量评价研究[J]. 沈阳农业大学学报, 2019, 50(1): 70-77.
LIU P, YU L, LI R P, et al.Site quality evaluation of Pinus tabulaeformis building timber forest in the mountainous area of eastern Liaoning province, China[J]. Journal of Shenyang Agricultural University, 2019, 50(1): 70-77.
[9] 周光明, 周富伟, 王宇, 等. 中国油松提取药用成分对难医性瘢痕体质临床观察及实验研究[J]. 医学研究通讯, 2003, 32(2): 65, 28.
ZHOU G M,ZHOU F W,WANG Y,et al. Clinical observation and experimental study on the medicinal components extracted from Chinese pine[J]. Journal of medical research, 2003, 32(2): 65, 28.
[10] 刘京晶, 马岚, 薛孟君, 等. 不同处理下油松枯落物减流减沙效应试验研究[J]. 水土保持学报, 2019, 33(4): 126-132.
LIU J J,MA L, XUE M J, et al.Effect of runoff and sediment reduction of different treatment by litter of Pinus tabulaeformis[J]. Journal of soil and water conservation, 2019, 33(4): 126-132.
[11] CEN/TS 15210-2-2005, Solid biofuels-Methods for the determination of mechanical durability of pellets and briquettes-Part 2: Briquettes[S].
[12] ASTM D 440-86, Standard test method of drop shatter test for coal[S].
[13] GUOMIN M, FUMIO S, MITSUO H.Mechanochemical synthesis of tobermorite by wet grinding in a planetary ball mill[J]. Powder Technology, 1997, 93(1): 77-81.
[14] 柳恒饶, 刘光斌, 李林检, 等. 响应面法分析优化晚松生物质成型燃料制备工艺[J]. 林业工程学报, 2016, 1(1): 93-99.
LIU H R, LIU G B, LI L J, et al.Optimization of the manufacturing process of Pinus rigida briquette by response surface methodology[J]. Journal of forestry engineering, 2016, 1(1): 93-99.
[15] 李文, 李保庆, 三浦孝一. 原位漫反射红外分析水分对煤中氢键形成的作用规律[J]. 燃料化学学报, 1999(S1): 12-15.
LI W, LI B Q, KOUICHI M.In-Situ FTIR study of hydrogen bonding of water-coal interaction during drying[J]. Journal of fuel chemistry and technology, 1999(S1): 12-15.
[16] KALIYAN N, MOREY R V.Factors affecting strength and durability of densified biomass products[J]. Biomass and bioenergy, 2009, 33(3): 337-359.
[17] 崔旭阳, 杨俊红, 雷万宁, 等. 生物质成型燃料制备及燃烧过程添加剂应用及研究进展[J]. 化工进展, 2017, 36(4): 1247-1257.
CUI X Y, YANG J H, LEI W N, et al.Recent progress in research and application of DBBF additive in preparation and combustion process[J]. Chemical industry and engineering progress, 2017, 36(4): 1247-1257.
[18] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008, 57(8): 4667-4674.
SUN Q C,WANG G Q.Force distribution in static granular matter in two dimensions[J]. Acta physica sinica, 2008, 57(8): 4667-4674.
[19] 张静, 刘正光, 郑德聪, 等. 谷子秸秆固体燃料热压缩工艺研究[J]. 山西农业大学学报(自然科学版), 2018, 38(6): 63-70.
ZHANG J, LIU Z G, ZHENG D C, et al.Study on the thermal compression process of briquette produced from millet straw[J]. Journal of Shanxi Agricultural University(natural science edition), 2018, 38(6): 63-70.
[20] 金会心, 李水娥, 吴复忠. 生物质型煤成型实验研究[J]. 贵州工业大学学报(自然科学版), 2008, 37(5): 44-46.
JIN H X, LI S E, WU F Z.Study on biomass and coal briquetting[J]. Journal of Guizhou University of Technology(natural science edition), 2008, 37(5): 44-46.
[21] HARRINGTON J.The desirability function[J]. Industrial quality control, 1965, 21: 494-498.
[22] 何桢, 高雪峰, 崔庆安, 等. 基于三响应试验设计优化的满意度函数[J]. 系统工程, 2006(7): 105-110.
HE Z, GAO X F, CUI Q A, et al.Desirability functions based on optimization of three response experimental design[J]. Systems engineering, 2006(7): 105-110.
[23] 赵旋, 黄鹏鹏, 黄裕林. 基于响应曲面法与满意度函数的柔顺机构多响应稳健参数设计[J]. 制造业自动化, 2019, 41(3): 64-69.
ZHAO X, HUANG P P, HUANG Y L.Multi response robust parameter design for compliant mechanism based on response surface method and satisfaction function[J]. Manufacturing automation, 2019, 41(3): 64-69.
基金
国家重点研究计划(2016YFD0701804); 山西省重点研发计划(农业)(201703D221030-2); 山西省面上自然基金(201801D121277); 山西农业大学科技创新基金(2015ZZ09)