Wang Xin1, Huang Hulin1, Fawad Ahmed1, Zhao Yongbin2
Author information+
1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. State Grid Nanjing Automation New Energy Engineering Technology Co., Ltd., Nanjing 210032, China
Based on simulation modeling in MATLAB, a Stirling engine power control method was designed with PID adjustment, which can control a GPU-3 Stirling engine by changing pressure. The transfer function was simulated based on twenty groups of real values. The agreement between the simulated data and the real data is higher than 99%. The input pressure value was calculated through the transfer function to obtain the actual output power. The simulation results show that with the closed-loop negative feedback and PID adjustment, the output power can vary according to the specific law with the change of the input pressure value. This design eliminates the influence of input data disturbance and the external disturbance on output power stability so that the power control method for the Stirling engine has relatively strong stability and certain adaptive ability to disturbance.
Wang Xin, Huang Hulin, Fawad Ahmed, Zhao Yongbin.
CONTROL METHOD DESIGNED FOR STIRLING ENGINE[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 321-328 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0377
中图分类号:
TK323
TP273
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国可再生能源能源发展战略研究项目组. 中国可再生能源能源发展战略研究丛书综合卷[M]. 北京: 中国电力出版社,2008. China Renewable Energy Development Strategy Research Project. Comprehensive volume of China renewable energy development strategy research series[M]. Beijing: China Electric Power Press, 2008. [2] 刘浩. 基于太阳能利用的斯特林发动机研究初步[D]. 成都: 电子科技大学, 2014. LIU H.Preliminary study on Stirling engine based on solar energy utilization[D]. Chengdu: University of Electronic Science and Technology, 2014. [3] 金东寒. 斯特林发动机技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009. JIN D H.Stirling engine technology[M]. Harbin: Harbin Engineering University Press, 2009. [4] 邹隆清, 刘洪硕, 邓十洲. 斯特林发动机[M]. 长沙: 湖南大学出版社,1985. ZOU L Q, LIU H S, DENG S Z.Stirling engine[M]. Changsha: Hunan University Press, 1985. [5] 李宁. 碟式斯特林光热发电控制系统的设计[D]. 镇江: 江苏大学, 2013. LI N.Design of dish Stirling solar thermal power generation control system[D]. Zhenjiang: Jiangsu University, 2013. [6] 赵阳, 李兰欣, 余英. 碟式斯特林太阳能热发电系统[C]//2006年节能与可再生能源发电技术研讨会论文集, 中国青岛, 2006: 248-251. ZHAO Y, LI L X, YU Y.Disc-Stirling solar thermal power generation system[C]//Proceedings of 2006 Symposium on Energy Conservation and Renewable Energy Power Generation Technology, Qingdao, China, 2006: 248-251. [7] 彭靖波, 谢寿生, 胡金海. 基于遗传算法的某型涡扇发动机数字PID控制器设计[J]. 燃气涡轮试验与研究, 2008, 21(1): 47-50. PENG J B, XIE S S, HU J H.Design of digital PID controller for a turbofan engine based on genetic algorithm[J]. Gas turbine test and research, 2008, 21(1): 47-50. [8] 刘金琨. 先进PID控制MATLAB仿真[M]. 第2版. 北京:电子工业出版社, 2004. LIU J K.Matlab simulation of advanced PID control[M]. 2nd ed. Beijing: Electronic Industry Press, 2004. [9] 陶永华. 新型PID控制及其应用[M]. 第2版. 北京: 机械工业出版社, 2003. TAO Y H.New PID control and its application[M]. 2nd ed. Beijing: China Machine Press, 2003. [10] 何秀然, 谢寿生, 邹仕军, 等. 基于PID趋近率的航空发动机滑膜变结构控制[J]. 空军工程大学学报, 2009(10): 15-20. HE X R, XIE S S, ZOU S J, et al.Variable structure control of aeroengine sliding film based on PID approach rate[J]. Journal of Air Force Engineering University, 2009(10): 15-20. [11] 杨磊, 吴勇, 武卫, 等. 基于单神经元PID的航空发动机解耦控制[J]. 微计算机信息, 2010, 26(1): 57-59. YANG L, WU Y, WU W, et al.Aeroengine decoupling control based on single neuron PID[J]. Microcomputer information, 2010, 26(1): 57-59. [12] 黄金泉, 刘楠, 唐钰婷. 航空发动机PI控制参数频域最优整定方法[J]. 航空动力学报, 2015, 30(4): 979-984. HUANG J Q, LIU N, TANG Y T.Frequency domain optimal tuning method for PI control parameters of aeroengine[J]. Journal of aeronautical power, 2015, 30(4): 979-984. [13] 杨坤, 孙晓楠, 张正. 航空发动机模糊自适应PID控制系统仿真研究[J]. 自动化与仪表, 2019, 34(8): 90-94. YANG K, SUN X N, ZHANG Z.Simulation of fuzzy adaptive PID control system for aeroengine[J]. Automation and instrumentation, 2019, 34(8): 90-94. [14] 李述清,张胜修,刘毅男. 航空发动机全包线最优PID控制器设计[J]. 弹箭与制导学报, 2011, 31(4): 105-107. LI S Q, ZHANG S X, LIU Y N.Design of optimal PID controller for aeroengine full envelope[J]. Journal of missile and guidance, 2011, 31(4): 105-107. [15] 梁光照. 航天用斯特林发电机控制系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. LIANG G Z.Research on control system of Stirling generator for aerospace[D]. Harbin: Harbin University of Technology, 2016. [16] 何志明, 杨煜普, 奚煜, 等. 斯特林发动机高压燃烧系统油氧伺服控制系统设计[J]. 机电信息, 2016(36): 144-145. HE Z M, YANG Y P, XI Y, et al.Design of oil oxygen servo control system for high pressure combustion system of Stirling engine[J]. Electromechanical information, 2016(36): 144-145. [17] 徐健,吴纪国,张新疆. β型斯特林发电机控制系统研究[J]. 微电机, 2016, 49(8): 73-77. XU J, WU J G, ZHANG X J.Study on control system of β-type Stirling generator[J]. Micromotor, 2016, 49(8): 73-77. [18] 刘建新, 叶舒郁, 杜慧勇, 等. 斯特林发动机燃油系统的控制策略设计[J]. 海军工程大学学报, 2013, 25(6): 76-80. LIU J X, YE S Y, DU H Y, et al.Control strategy design of Stirling engine fuel system[J]. Journal of Naval Engineering University, 2013, 25(6): 76-80. [19] URIELI I, BERCHOWITZ D M.Stirling cycle engine analysis[M/OL]. https://www.osti.gov/etdeweb/biblio/6068495. Reference Number: EDB-86-072920,OSTI ID: 6068495 Availability: Adam Hilger Ltd. [20] AHMED F, HULIN H, KHAN A M.Numerical modeling and optimization of beta-type Stirling engine[J]. Applied thermal engineering, 2019, 149: 85-400. [21] 黄护林. 太阳能斯特林发动机的性能模拟[J]. 太阳能学报, 2004, 25(5): 657-662. HUANG H L.Simulation of performances for solar dish/Stirling system[J]. Acta energiae solaris sinica, 2004, 25(5): 657-662. [22] 钱国柱. 热气机原理与设计[M]. 北京: 国防工业出版社, 1987. QIAN G Z.Principle and design of heat engine[M]. Beijing: National Defense Industry Press, 1987. [23] 方日亮. 某冷库冷藏室温度控制系统设计[D]. 南京:南京航空航天大学, 2018. FANG R L.Design of temperature control system for cold storage room[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. [24] 陈复扬. 自动控制原理[M]. 第2版. 北京: 国防工业出版社, 2016. CHEN F Y.Principle of automatic control[M]. 2nd ed. Beijing: National Defense Industry Press, 2016.