基于季节指数调整的循环神经网络风速时间序列预测

姜明洋, 徐丽, 张开军, 马远兴

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 444-450.

PDF(1754 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1754 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 444-450. DOI: 10.19912/j.0254-0096.tynxb.2020-0389

基于季节指数调整的循环神经网络风速时间序列预测

  • 姜明洋, 徐丽, 张开军, 马远兴
作者信息 +

RECURRENT NEURAL NETWORK PREDICTION OF WIND SPEED TIME SERIES BASED ON SEASONAL EXPONENTIAL ADJUSTMENT

  • Jiang Mingyang, Xu Li, Zhang Kaijun, Ma Yuanxing
Author information +
文章历史 +

摘要

提出一种基于季节指数调整的神经网络风速预测方法。针对历史风速之间的非线性关系,运用神经网络非线性拟合能力并结合季节性指数调整对风速时间序列进行预测。通过时序图法和增广Dickey-Fullerd检验法判断时间序列的平稳性,结果表明该序列为非平稳序列。这种不稳定性说明时间序列中可能包含趋势、季节性、循环和不规则成分的一种或多种,为此采用时间序列分解模型对时间序列进行季节指数调整。最后采用LSTM 和GRU神经网络预测风速,得到了较好的预测结果,且与未调整的数据预测结果及加法模型季节指数调整后的预测结果相比,基于乘法模型季节指数调整的2种神经网络预测结果有更高的风速预测精度。

Abstract

A novel method of wind speed prediction based on neural network with seasonal exponential adjustment is proposed. Based on the nonlinear relationships among historical wind speeds and the strong nonlinear fitting ability of neural network, the neural network combined with seasonal exponential adjustment is adopted to predict the wind speed time series. First, time series graph and augmented Dickey-Fuller method are used to test the stability of time series. The results show that time series is unstable. The instability indicates that the time series contains seasonal, trending, cyclic and irregular components. In this paper, this time series decomposition model is used to adjust the seasonal index of time series. Finally, LSTM and GRU neural networks are used to predict wind speed data, and the ideal prediction results are obtained. Compared with the results of raw wind speed data and the seasonal exponential adjustment with the addition model, the results of two neural network methods based on the seasonal exponential adjustment with the multiplication model achieve much higher accuracy of wind speed prediction.

关键词

风速预测 / 组合预测 / 神经网络 / 长短时记忆网络 / 门控循环网络 / 时间序列分析

Key words

wind speed prediction / combination forecasting / neural network / long short-term memory network / gated recurrent unit network / time series analysis

引用本文

导出引用
姜明洋, 徐丽, 张开军, 马远兴. 基于季节指数调整的循环神经网络风速时间序列预测[J]. 太阳能学报. 2022, 43(2): 444-450 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0389
Jiang Mingyang, Xu Li, Zhang Kaijun, Ma Yuanxing. RECURRENT NEURAL NETWORK PREDICTION OF WIND SPEED TIME SERIES BASED ON SEASONAL EXPONENTIAL ADJUSTMENT[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 444-450 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0389
中图分类号: TM614   

参考文献

[1] 杨茂, 杨琼琼, 苏欣. 基于风电场等效平均风速的风电功率日前预测研究[J]. 太阳能学报, 2020, 41(2): 85-92.
YANG M, YANG Q Q, SU X.Ultra-short term probabilistic intervals forecasting of wind power based on optimization model of forecasting error distribution[J]. Acta energy solaris sinica, 2020, 41(2): 85-92.
[2] SOMAN S, ZAREIPOUR H, MALIK O P, et al.A review of wind power and wind speed forecasting methods with different time horizons[C]//2010 North American Power Symposium, Arlington, Texas, USA, 2010.
[3] 张飞民, 王澄海, 谢国辉, 等. 气候变化背景下未来全球陆地风, 光资源的预估[J]. 干旱气象, 2018, 36(5): 725-732.
ZHANG F M, WANG C H, XIE G H, et al.Projection of global wind and solar energy over land under climate change scenarios during 2020-2030[J]. Journal of arid meteorology, 2018, 36(5): 725-732.
[4] KARNAUSKAS K B, LUNDQUIST J K, ZHANG L.Southward shift of the global wind energy resource under high carbon dioxide emissions[J]. Nature geoscience, 2018, 11(1): 38-43.
[5] 罗帅, 丁勤卫, 李春, 等. 风速时间序列混沌特征分析及非线性短期预测[J]. 能源工程, 2019(5): 50-56.
LUO S, DING Q W, LI C, et al.Analysis of chaotic charateristics of wind speed time series and nonlinear short-term prediction[J]. Energy engineering, 2019 (5): 50-56.
[6] 袁全勇, 李春, 杨阳. 风速时间序列非线性特征分析[J]. 热能动力工程, 2018, 33(8): 135-143.
YUAN Q Y, LI C, YANG Y.Nonlinear characteristic analysis of wind speed time series[J]. Journal of engineering for thermal energy and power, 2018, 33(8):135-143.
[7] GUO Z H, WU J, LU H Y.A case study on a hybrid wind speed forecasting method using BP neural network[J]. Knowledge-based systems, 2011, 24(7): 1048-1056.
[8] WU J, WANG J Z, LU H Y.Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model[J]. Energy conversion and management, 2013, 70: 1-9.
[9] ÇEVIK H H, ÇUNKAŞ M, POLAT K, et al.A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods[J]. Physica A: Statistical mechanics and its applications, 2019, 534: 122177.
[10] CHEN J, ZENG G Q, ZHOU W N.Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization[J]. Energy conversion and management, 2018, 165: 681-695.
[11] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[12] CHUNG J Y, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. https://arxiv.org/abs//1412.3555. Presented in NIPS 2014 Deep Learning and Representation Learning Work.
[13] WANG J Q, DU Y, WANG J.LSTM based long-term energy consumption prediction with periodicity[J]. Energy, 2020, 197: 117197.
[14] KAREVAN Z, SUYKENS J A K. Transductive LSTM for time-series prediction: An application to weather forecasting[J]. Neural networks, 2020, 125: 1-9.
[15] MUZAFFAR S, AFSHARI A.Short-term load forecasts using LSTM networks[J]. Energy procedia, 2019, 158: 2922-2927.
[16] LIU H, MI X W, LI Y F.Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM[J]. Energy conversion and management, 2018, 159: 54-64.
[17] LIU H, MI X W, LI Y F, et al.Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression[J]. Renewable energy, 2019, 143: 842-854.
[18] DICKEY D A, FULLER W A.Distribution of the estimators for autoregressive time series with a unit root[J]. Journal of the American Statistical Association, 1979, 74(366a): 427-431.
[19] ZHANG G P, QI M.Neural network forecasting for seasonal trend time series[J]. European journal of operational research, 2005, 160(2): 501-514.

基金

国家自然科学基金(11502141)

PDF(1754 KB)

Accesses

Citation

Detail

段落导航
相关文章

/