基于AA-CAES的冷热电三联产系统的热经济性分析

韩中合, 孙烨, 李鹏, 胡庆亚

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 97-103.

PDF(1581 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1581 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 97-103. DOI: 10.19912/j.0254-0096.tynxb.2020-0402

基于AA-CAES的冷热电三联产系统的热经济性分析

  • 韩中合, 孙烨, 李鹏, 胡庆亚
作者信息 +

THERMO-ECONOMIC ANALYSIS OF TRIGENERATION SYSTEM BASED ON AA-CAES

  • Han Zhonghe, Sun Ye, Li Peng, Hu Qingya
Author information +
文章历史 +

摘要

为了研究储热罐内热量的分配和利用对先进绝热压缩空气储能系统性能的影响,提高系统在可再生能源并网应用中的效率与经济性,提出5种热量分配方案。采用数值模拟的方法,比较系统5种方案下的热力学与经济学特性,并研究关键参数对不同方案下系统性能的影响。结果表明:热量分配比越大,循环效率越高,而年利润率越小。对于5种热量分配方案,循环效率和年利润率随储气室最大压比的增大均存在最小值,且存在最佳的换热器效能,使得循环效率和年利润率具有最大值。压缩机入口温度的变化对5种热量分配方案的循环效率和年利润率的影响各不相同。系统年利润率随着燃料价格的升高而减少,而随着产品价格的升高而增加。

Abstract

In order to investigate the effect of heat distribution and utilization in heat storage tank on the performance of advanced adiabatic compressed air energy storage system, and improve the efficiency and economy of the system in the grid-connected application of renewable energy, five heat distribution schemes are proposed. By means of numerical simulation, the thermodynamic and economic characteristics of the system under five schemes are compared, and the influence of key parameters on the performance of the system under different schemes is also studied. The results show that the higher the heat distribution ratio, the higher the cycle efficiency and the smaller the annual profit margin. For the five heat distribution schemes, cycle efficiency and annual profit margin exists the minimum values with the increase of the maximum pressure ratio of gas storage chamber. And there is an optimal heat exchanger effectiveness, so that the cycle efficiency and annual profit margin have the maximum. The effect of the inlet temperature of the compressor on the cycle efficiency and annual profit margin of the five heat distribution schemes is different. Moreover, the annual profit margin decreases as fuel price increases while increases as product price increases.

关键词

压缩空气储能 / 数值模拟 / 性能分析 / 冷热电三联产 / 热量分配

Key words

compressed air energy storage / numerical simulation / performance analysis / combined cooling,heating and power trigeneration / heat distribution

引用本文

导出引用
韩中合, 孙烨, 李鹏, 胡庆亚. 基于AA-CAES的冷热电三联产系统的热经济性分析[J]. 太阳能学报. 2022, 43(2): 97-103 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0402
Han Zhonghe, Sun Ye, Li Peng, Hu Qingya. THERMO-ECONOMIC ANALYSIS OF TRIGENERATION SYSTEM BASED ON AA-CAES[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 97-103 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0402
中图分类号: TK02   

参考文献

[1] 伍俊, 鲁宗相, 乔颖, 等.考虑储能动态充放电效率特性的风储电站运行优化[J]. 电力系统自动化, 2018, 42(11): 41-47, 101.
WU J, LU Z X, QIAO Y, et al.Optimal operation of wind farm with hybrid storage devices considering efficiency characteristics of dynamic charging and discharging[J]. Automation of electric power systems, 2018, 42(11): 41-47, 101.
[2] LUND H, SALGI G.The role of compressed air energy storage(CAES)in future sustainable energy systems[J]. Energy conversion and management, 2009, 50(5): 1172-1179.
[3] 韩中合, 庞永超, 刘士名. 基于变效率压气机的CAES系统性能分析[J]. 太阳能学报,2017, 38(5): 1291-1298.
HAN Z H, PANG Y C, LIU S M.Performance analysis of caes system based on the efficiency of compressor[J]. Acta energiae solaris sinica, 2017, 38(5): 1291-1298.
[4] 张远, 杨科, 李雪梅, 等. 基于先进绝热压缩空气储能的冷热电联产系统[J]. 工程热物理学报, 2013, 34(11): 1991-1996.
ZHANG Y, YANG K, LI X M, et al.A combined cooling,heating and power (CCHP) system based on advanced adiabatic compressed air energy storage(AA-CAES) technology[J]. Journal of engineering thermophysics, 2013, 34(11): 1991-1996.
[5] SZABLOWSKI L, KRAWCZYK P, BADYDA K,et al.Energy and exergy analysis of adiabatic compressed air energy storage system[J]. Energy, 2017, 138: 12-18.
[6] WOLF D, BUDT M.LTA-CAES—A low-temperature approach to adiabatic compressed air energy storage[J]. Applied energy, 2014, 125: 158-164.
[7] 韩中合, 庞永超. AA-CAES系统储能过程运行策略分析[J]. 太阳能学报, 2018, 39(3): 697-703.
HAN Z H, PANG Y C.Analysis of operation strategy during energy storage process in AA-CAES system[J]. Acta energiae solaris sinica, 2018, 39(3): 697-703.
[8] HE Y, CHEN H S, XU Y J, et al.Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system[J]. Energy, 2018, 165(Part B): 349-359.
[9] YANG K, ZHANG Y, LI X M, et al.Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system[J]. Energy conversion and management, 2014, 86: 1031-1044.
[10] 梅生伟, 公茂琼, 秦国良, 等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术, 2017, 41(10): 3392-3399.
MEI S W, GONG M Q, QIN G L, et al.Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power system technology, 2017, 41(10): 3392-3399.
[11] ZHANG Y, YANG K, LI X M, et al.The thermodynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system[J]. Renewable energy, 2013, 57: 469-478.
[12] ZHANG X F, ZENG R, DENG Q L, et al. Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage (CAES)[J]. Energy conversion and management, 2019, 199: 111953.1-111953.18.
[13] KORAKIANITIS T, WILSON D G.Models for predicting the performance of Brayton-cycle engines[J]. Journal of engineering for gas turbines and power, 1994, 116: 381-388.
[14] JUBEH N M, NAJJAR Y S H. Green solution for power generation by adoption of adiabatic CAES system[J]. Applied thermal engineering, 2012, 44: 85-89.
[15] 朱瑞. 太阳能蓄热式压缩空气储能系统热力特性及技术经济性研究[D]. 保定: 华北电力大学, 2017.
ZHU R.Thermodynamic performance and thermo- economic analysis on compressed air energy storage with solar thermol storage system[D]. Baoding: North China Electric Power University,2017.
[16] LI R X, WANG H R, TU Q S.Thermo-economic analysis and optimization of adiabatic compressed air energy storage(A-CAES)system coupled with a Kalina cycle[J]. Energy technology, 2018, 6: 1011-1025.
[17] RAZMI A, SOLTANI M, AGHANAJAFI C, et al.Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES)[J]. Energy conversion and management, 2019, 187: 262-273.
[18] 北京市发展和改革委员会. 关于调整本市一般工商业销售电价有关问题的通知[EB/OL].http://fgw.beijing.gov.cn/fgwzwgk/zcgk/bwqtwj/201912/t20191226_1506705.htm.
Beijing municipal commission of development and reform. Notice on adjusting the general industrial and commercial sales electricity price of Beijing[EB/OL]. http://fgw.beijing.gov.cn/fgwzwgk/zcgk/bwqtwj/201912/t20191226_1506705.htm.
[19] 北京市发展和改革委员会. 关于调整本市非居民供热价格有关问题的通知[EB/OL].http://fgw.beijing.gov.cn/fgwzwgk/zcgk/bwqtwj/201912/t20191226_1506723.htm.
Beijing municipal commission of development and reform. Notice on adjusting the heating price of non-residents in Beijing[EB/OL]. http://fgw.beijing.gov.cn/fgwzwgk/zcgk/bwqtwj/201912/t20191226_1506723.htm.

基金

河北省自然科学基金(E2018502059)

PDF(1581 KB)

Accesses

Citation

Detail

段落导航
相关文章

/