基于深度置信网络的短期风电功率预测

袁桂丽, 吴振民, 刘骅骐, 禹建芳, 房方

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 451-457.

PDF(1836 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1836 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 451-457. DOI: 10.19912/j.0254-0096.tynxb.2020-0405

基于深度置信网络的短期风电功率预测

  • 袁桂丽, 吴振民, 刘骅骐, 禹建芳, 房方
作者信息 +

SHORT-TERM WIND POWER PREDICTION BASED ON DEEP BELIEF NETWORK

  • Yuan Guili, Wu Zhenmin, Liu Huaqi, Yu Jianfang, Fang Fang
Author information +
文章历史 +

摘要

为解决海量数据用作预测模型训练样本导致信息冗杂的问题,提出一种基于深度置信网络的短期风电功率预测方法。该方法首先使用历史数据作为训练样本,通过深度置信网络无监督学习提取出其相应特征,随后采用K均值算法对提取出的特征进行聚类分析,将历史数据分作几类,并通过判别分析确定待测日所属类别,以该类别所属的历史数据对设置了误差反馈层的深度置信网络进行有监督训练,再将待测日的气象信息输入训练好的深度置信网络模型得到待测日的预测功率。最后使用云南某风电场实际运行数据进行算例分析,证实了该方法的有效性。

Abstract

The current massive wind power historical data provides a very good foundation for the use of deep learning for wind power prediction. In order to solve the problem of information redundancy due to the massive data used as the training sample of the prediction model, a short-term wind power prediction method based on Deep Belief Network is proposed. The method first uses historical data as training samples, extracts its corresponding features through deep belief network unsupervised learning, and then uses the K-means algorithm to perform cluster analysis on the extracted features. The historical data is divided into several categories, and the category of the days to be measured is determined by discriminant analysis. Using the historical data belong to this category to supervised train the Deep Belief Network with the error feedback layer, and inputting the weather information of the day to be measured into the trained Deep Belief Network model, the predicted power is finally obtained. The effectiveness of the proposed method is verified by an example of the actual operation data of a wind farm in Yunnan province.

关键词

深度学习 / 风电功率预测 / 无监督学习 / 聚类分析 / 判别分析

Key words

deep learning / wind power prediction / unsupervised learning / cluster analysis / discriminant analysis

引用本文

导出引用
袁桂丽, 吴振民, 刘骅骐, 禹建芳, 房方. 基于深度置信网络的短期风电功率预测[J]. 太阳能学报. 2022, 43(2): 451-457 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0405
Yuan Guili, Wu Zhenmin, Liu Huaqi, Yu Jianfang, Fang Fang. SHORT-TERM WIND POWER PREDICTION BASED ON DEEP BELIEF NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 451-457 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0405
中图分类号: TM614   

参考文献

[1] 乔颖, 鲁宗相, 闵勇. 提高风电功率预测精度的方法[J]. 电网技术, 2017, 41(10): 3261-3268.
QIAO Y, LU Z X, MIN Y.Research & application of raising wind power prediction accuracy[J]. Power system technology, 2017, 41(10): 3261-3268.
[2] 陈伟, 吴布托, 裴喜平. 风电机组异常数据预处理的分类多模型算法[J].电力系统及其自动化学报, 2018, 30(4): 137-143.
CHEN W, WU B T, PEI X P.Classification multi-modelalgorithm for abnormal data preprocessing in wind turbines[J]. Proceedings of the CSU-EPSA, 2018, 30(4): 137-143.
[3] 彭文, 谢凤昱, 张智源. 考虑相似时段聚类的风电功率短期预测算法[J]. 电力系统及其自动化学报, 2019, 31(10): 81-87.
PENG W, XIE F Y, ZHANG Z Y.Short-term wind power forecasting algorithm based on similar time period clustering[J]. Proceedings of the CSU-EPSA, 2019, 31(10): 81-87.
[4] WANG S Z, GAO S, ZHAO X, et al.A multi-timescale wind power forecasting method based on selection of similar days[C]//China International Conference on Electricity Distribution, Xi'an, 2016.
[5] 栾毅, 杨永强, 剡文林. 基于相似日和人工神经网络的风电功率短期预测研究[J]. 能源与环保, 2018, 40(10): 140-146.
LUAN Y, YANG Y Q, YAN W L.Research on short-term forecast of wind power based on similar day and artificial neural network[J]. China energy and environmental protection, 2018, 40(10): 140-146.
[6] 丁志勇, 杨苹, 杨曦, 等. 基于连续时间段聚类的支持向量机风电功率预测方法[J]. 电力系统自动化, 2012, 36(14): 131-135.
DING Z Y, YANG P, YANG X, et al.Wind power prediction method based on sequential time clustering support vector machine[J]. Automation of electric power systems, 2012, 36(14): 131-135.
[7] 王勃, 冯双磊, 刘纯. 基于天气分型的风电功率预测方法[J]. 电网技术, 2014, 38(1): 93-98.
WANG B, FENG S L, LIU C.Study on weather typing based wind power prediction[J]. Power system technology, 2014, 38(1): 93-98.
[8] HINTON G E, OSINDERO S, TEH Y W.A fast learning algorithm for deep belief nets[J]. Neural computation,2006, 18(7): 1527-1554.
[9] 孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究,2012, 29(8): 2806-2810.
SUN Z J, XUE L, XU Y M, et al.Overview of deep learnin[J]. Application research of computers, 2012, 29(8): 2806-2810.
[10] 杨慧婷, 杨文忠, 殷亚博, 等. 基于深度信念网络的K-means聚类算法研究[J]. 现代电子技术, 2019, 42(8): 145-150.
YANG H T, YANG W Z, YIN Y B, et al.Research on K-means clustering algorithm based on deep belief network[J]. Modern electronics technique, 2019, 42(8): 145-150.
[11] 王功鹏, 段萌, 牛常勇. 基于卷积神经网络的随机梯度下降算法[J].计算机工程与设计, 2018, 39(2): 441-445.
WANG G P, DUAN M, NIU C Y.Stochastic gradient descent algorithm based on convolutional neural network[J]. Computer engineering and design, 2018, 39(2): 441-445.
[12] 杨观赐, 杨静, 李少波, 等. 基于Dropout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版), 2018, 46(7): 122-127.
YANG G C, YANG J, LI S B, et al.Modified CNN algorithm based on Dropout and ADAM optimizer[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2018, 46(7): 122-127.
[13] 龚伟. 基于信息熵和互信息的流域水文模型不确定性分析[D]. 北京: 清华大学, 2012.
GONG W.Watershed model uncertainty analysis of based on information entropy and mutual information[D]. Beijing: Tsinghua University, 2012.
[14] 史坤鹏, 乔颖, 赵伟, 等. 计及历史数据熵关联信息挖掘的短期风电功率预测[J]. 电力系统自动化, 2017, 41(3): 13-18.
SHI K P, QIAO Y, ZHAO W, et al.Short-term wind power prediction based on entropy association information mining of historical data[J]. Automation of electric power systems, 2017, 41(3): 13-18.
[15] 张建方, 王秀祥. 直方图理论与最优直方图制作[J]. 应用概率统计, 2009, 25(2): 201-214.
ZHANG J F, WANG X X.Histogram theory and optimal histogram production[J]. Chinese journal of applied probability and statistics, 2009, 25(2): 201-214.
[16] 成卫青, 卢艳红. 一种基于最大最小距离和SSE的自适应聚类算法[J]. 南京邮电大学学报(自然科学版),2015, 35(2): 102-107.
CHENG W Q, LU Y H.An adaptive clustering algorithm based on maximum and minimum distance and SSE[J]. Journal of Nanjing University of Posts and Telecommunications (natural science edition), 2015, 35(2): 102-107.
[17] 朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30(增刊2): 139-141, 198.
ZHU L J, MA B X, ZHAO X Q.Clustering effectiveness analysis based on contour coefficient[J]. Computer applications, 2010, 30(S2): 139-141, 198.
[18] 任玮. 基于深度信念网络的网络流量预测模型[J].山西电子技术, 2016(1): 62-64.
REN W.Network traffic forecasting based on deep belief network[J]. Shanxi Electronic Technology, 2016(1): 62-64.
[19] 张东英, 李伟花, 刘燕华, 等. 风电场有功功率异常运行数据重构方法[J]. 电力系统自动化, 2014, 38(5): 14-18, 24.
ZHANG D Y, LI W H, LIU Y H, et al.Reconstruction method of active power historical operating data for wind farm[J]. Automation of electric power systems, 2014, 38(5): 14-18, 24.
[20] 方江晓. 短期风速和风电功率预测模型的研究[D]. 北京: 北京交通大学, 2011.
FANG J X.Research on short-term wind speed and wind power prediction model[D]. Beijing: Beijing Jiaotong University, 2011.

基金

国家重点研发计划政府间科技合作重点专项(2018YFE0106600)

PDF(1836 KB)

Accesses

Citation

Detail

段落导航
相关文章

/