地质参数对中深层地热井长期取热特性影响分析

韩二帅, 李奉翠, 梁磊, 徐言晖, 鞠睿, 刘帅

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 62-68.

PDF(2083 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2083 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 62-68. DOI: 10.19912/j.0254-0096.tynxb.2020-0406

地质参数对中深层地热井长期取热特性影响分析

  • 韩二帅1, 李奉翠1, 梁磊1, 徐言晖1, 鞠睿1, 刘帅2
作者信息 +

EFFECTS OF GEOLOGICAL PARAMETERS ON LONG-TERM THERMAL EXTRACTION CHARACTERISTICS OF MEDIUM-DEEP GEOTHERMAL WELL

  • Han Ershuai1, Li Fengcui1, Liang Lei1, Xu Yanhui1, Ju Rui1, Liu Shuai2
Author information +
文章历史 +

摘要

基于中深层地热井换热原理,数值分析不同地质参数下中深层地热井在长期运行过程中单井取热量、能效系数、热泵机组COP以及岩土温度的变化情况。研究结果表明:岩土导热系数对长期运行期间的单井取热量、能效系数的下降比例影响较大,且岩土导热系数越小其下降比例越大。岩土导热系数为2.0 W/(m·K)时,第30年的单井取热量、能效系数与第1年相比均下降13.7%。地温梯度对长期运行期间的热泵机组COP的下降程度有较大影响,其下降比例随地温梯度的增大而增大。此外,不同地质参数下岩土温度影响半径随运行年份增加的比例一致。

Abstract

Based on the heat transfer mechanism of medium-deep geothermal well, numerical analysis is carried out to investigate the effects of different geological parameters on the single-well heat extraction load (HEL), energy efficiency coefficient, heat pump unit COP, and rock-soil temperature during the long-term operation. The results indicate that rock-soil thermal conductivity (RTC) has a significant effect on the decline ratios of single-well HEL and energy efficiency coefficient with operating year. The lower RTC, the larger decline ratios. At 2.0 W/(m·K) of RTC, both single-well HEL and energy efficiency coefficient in the 30 th year decline by 13.7% compared to those in the first year. Geothermal temperature gradient largely affects the decline degree of heat pump unit COP with operating year. The decline ratio increases with an increasing geothermal temperature gradient. Additionally, under different geological parameters, the influence radius of rock and soil temperature increases proportionally with operating years.

关键词

地热井 / 地质参数 / 能效系数 / 长期取热 / 岩土温度 / 中深层

Key words

geothermal well / geologyical parameters / energy efficiency coefficient / long-term thermal extraction / rock-soil temperature / medium-deep layer

引用本文

导出引用
韩二帅, 李奉翠, 梁磊, 徐言晖, 鞠睿, 刘帅. 地质参数对中深层地热井长期取热特性影响分析[J]. 太阳能学报. 2022, 43(2): 62-68 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0406
Han Ershuai, Li Fengcui, Liang Lei, Xu Yanhui, Ju Rui, Liu Shuai. EFFECTS OF GEOLOGICAL PARAMETERS ON LONG-TERM THERMAL EXTRACTION CHARACTERISTICS OF MEDIUM-DEEP GEOTHERMAL WELL[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 62-68 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0406
中图分类号: TK529   

参考文献

[1] TOMASINI-MONTENEGRO C, SANTOYO-CASTELAZO E, GUJBA H, et al.Life cycle assessment of geothermal power generation technologies: an updated review[J]. Applied thermal engineering, 2017, 114: 1119-1136.
[2] SUTER C, JOVANOVIC Z R, STEINFELD A.A1 kWe thermoelectric stack for geothermal power generation modeling and geometrical optimization[J]. Applied energy, 2012, 99: 379-385.
[3] ØSTERGAARD P A, LUND H.A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating[J]. Applied energy, 2011, 88(2): 479-487.
[4] SAPINSKA-SLIWA A, ROSEN M A, GONET A,et al. Deep borehole heat exchangers-A conceptual and comparative review[J]. International journal of air-conditioning and refrigeration, 2016, 24(1): 1630001.1-1630001.15.
[5] KNOBLAUCH T A K, TRUTNEVYTE E, Stauffacher M. Siting deep geothermal energy: acceptance of various risk and benefit scenarios in a Swiss-German cross-national study[J]. Energy policy, 2019, 128: 807-816.
[6] 刘俊, 蔡皖龙, 王沣浩, 等. 深层地源热泵系统实验研究及管井结构优化[J]. 工程热物理学报, 2019, 40(9): 2143-2150.
LIU J, CAI W L, WANG F H, et al.Experimental study and tube structure optimization of deep borehole ground source heat pump[J]. Journal of engineering thermophysics, 2019, 40(9): 2143-2150.
[7] 邓杰文, 魏庆芃, 张辉, 等. 中深层地热源热泵供暖系统能耗和能效实测分析[J]. 暖通空调, 2017, 47(8): 150-154.
DENG J W, WEI Q P, ZHANG H, et al.On-site measurement and analysis on energy consumption and energy efficiency ratio of medium-depth geothermal heat pump systems for space heating[J]. Heating ventilation and air condition, 2017, 47(8): 150-154.
[8] 韩二帅, 张家护, 鲁冰雪, 等. 中深层地热能供热技术综述及工程实例[J]. 区域供热, 2019(2): 79-83, 95.
HAN E S, ZHANG J H, LU B X, et al.Summary and engineering cases of medium-depth geothermal heating technology[J]. District heating, 2019(2): 79-83, 95.
[9] KOTLER S.Abandoned oil and gas wells are leaking[EB/OL]. http://www.zcommunications.org/abandoned oil and gas well are leaking by steven kotler.
[10] BARBIER E.Geothermal energy technology and current status: an overview[J]. Renewable and sustainable energy reviews, 2002, 6(1-2): 3-65.
[11] LIU J, WANG F H, CAI W L, et al.Numerical study on the effects of design parameters on the heat transfer performance of coaxial deep borehole heat exchanger[J]. International journal of energy research, 2019, 43(12): 6337-6352.
[12] FANG L, DIAO N R, SHAO Z K, et al.A Computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and buildings, 2018, 167: 79-88.
[13] CHEN C F, SHAO H B, NAUMOV D, et al.Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating[J]. Geothermal energy, 2019, 7: 18.
[14] SONG X Z, WANG G S, SHI Y, et al.Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018, 164: 1298-1310.
[15] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001: 78-88.
TAO W Q.Numerical heat transfer[M]. Xi'an: Xi'an Jiaotong University Press,2001: 78-88.

基金

河南省重点研发与推广专项(科技攻关)项目(202102310286)

PDF(2083 KB)

Accesses

Citation

Detail

段落导航
相关文章

/