基于多尺度CNN的光伏组件缺陷识别

周颖, 叶红, 王彤, 常明新

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 211-216.

PDF(2477 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2477 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 211-216. DOI: 10.19912/j.0254-0096.tynxb.2020-0408

基于多尺度CNN的光伏组件缺陷识别

  • 周颖1,2, 叶红1, 王彤1, 常明新1
作者信息 +

PHOTOVOLTAIC MODULE DEFECT IDENTIFICATION BASED ON MULIT-SCALE CONVOLUTION NEURAL NETWORK

  • Zhou Ying1,2, Ye Hong1, Wang Tong1, Chang Mingxin1
Author information +
文章历史 +

摘要

为提高光伏组件缺陷分类精度与效率,提出一种改进的多尺度卷积神经网络模型(IMCNN)。该算法根据光伏组件缺陷特点,构建3个不同尺度端对端的卷积神经网络模型,同时为优化网络结构,在3个通道中均引入SE-Inception模块。首先由多通道卷积提取精密度不同的特征;再将这些特征进行融合,得到特征的增强表达;最后实现光伏组件的缺陷分类。由于光伏组件的缺陷样本较少,使用生成对抗网络生成一部分图像样本,达到有效进行数据增强的目的。实验结果表明,所提算法的Kappa系数较高,分类精度与效率均有明显提升。

Abstract

In order to improve the accuracy and efficiency of photovoltaic module defect classification, an Improved Multi-scale Convolutional Neural Network (IMCNN) model is proposed. According to the defect characteristics of photovoltaic module, the algorithm constructs the end-to-end Convolutional Neural Network model of three channels with different scales. At the same time, in order to optimize the network structure, SE-Inception modules are introduced in all three channels. Firstly, multi-channel convolution is used to extract features with different fineness. Then these features are fused to obtain the enhanced expression of high-level features. Finally, the defect classification of photovoltaic module is realized. Due to the small number of defective samples of photovoltaic module, a part of the image samples is generated using the Generative Adversarial Networks to effectively expanding the dataset. The results show that the Kappa coefficient of the proposed algorithm is higher, and the identification accuracy and efficiency are significantly improved.

关键词

光伏组件 / 缺陷识别 / 图像处理 / 卷积神经网络 / 生成对抗网络

Key words

photovoltaic modules / defect identification / picture processing / convolutional neural networks / generative adversarial networks

引用本文

导出引用
周颖, 叶红, 王彤, 常明新. 基于多尺度CNN的光伏组件缺陷识别[J]. 太阳能学报. 2022, 43(2): 211-216 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0408
Zhou Ying, Ye Hong, Wang Tong, Chang Mingxin. PHOTOVOLTAIC MODULE DEFECT IDENTIFICATION BASED ON MULIT-SCALE CONVOLUTION NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 211-216 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0408
中图分类号: TP391.5   

参考文献

[1] BROOKS W S M, LAMB D A, IRVINE S J C. IR reflectance imaging for crystalline Si solar cell crack detection[J]. IEEE journal of photovoltaics, 2015, 5(5): 1271-1275.
[2] 沈凯, 陈克, 杭丽君, 等. 一种可提升光伏系统在局部阴影时发电效率的阵列连接策略[J]. 太阳能学报, 2020, 41(4): 51-58.
SHEN K, CHEN K, HANG L J, et al.A arry strategy for efficiency improvement of photovoltaic systems under partially shaded condition[J]. Acta energiae solaris sinica, 2020, 41(4): 51-58.
[3] STROMER D, VETTER A, OEZKAN H C, et al.Enhanced crack segmentation(eCS): a reference algorithm for segmenting cracks in multicrystalline silicon solar cells[J]. IEEE journal of photovoltaic, 2019, 9(3): 752-758.
[4] JEN C Y, RICHTER C.Doping profile recognition applied to silicon photovoltaic cells using terahertz time-domain spectroscopy[J]. IEEE transactions on terahertz science and technology, 2014, 4(5): 560-567.
[5] SUN Q M, MELNIKOV A, MANDELIS A.Camera-based high frequency heterodyne lock-in carrierographic (frequency-domain photoluminescence)imaging of crystalline silicon wafers[J]. Physica status solidi, 2016, 213(2): 405-411.
[6] 鲁伟明, 李省, 张付特, 等. 基于不同电压下的电致发光和红外成像的太阳能电池缺陷检测[J]. 发光学报, 2014, 35(12): 1511-1519.
LU W M, LI X, ZHANG F T, et al.Defect detection of solar cell based on electroluminescence and thermography imaging with different bias voltage[J]. Chinese journal of luminescence, 2014, 35(12): 1511-1519.
[7] DEMANT M, WELSCHEHOLD T, OSWALD M, et al.Microcracks in silicon wafers I: inline detection and implications of crack morphology on wafer strength[J]. IEEE journal of photovoltaics, 2016, 6(1): 126-135.
[8] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, MIT Press, NIPS, 2014.
[9] RADFORD A, METZ L, CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. [2015-11-19].https://arxiv.org/abs/1511.06434.
[10] LI Y C, XIAO N F, OUYANG W L.Improved boundary equilibrium generative adversarial networks[J]. IEEE access, 2018, 6: 11342-11348.
[11] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein GAN[J/OL].[2017-12-06].https:// arxiv.org/abs/1701.07875.
[12] CHAWLA N V, BOWYER K W, HALL L O, et al.SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357.
[13] INOUE H.Data augmentation by pairing samples for images classification[J/OL]. [2018-04-11].https:// arxiv.org/abs/1801.02929.
[14] ZHANG H, CISSE M, DAUPHIN Y N, et al.Mixup: beyond empirical risk minimization[J/OL]. [2018-04-27].https://arxiv.org/abs/1710.09412.
[15] 姚明海, 李洁, 王宪保. 基于RPCA的太阳能电池片表面缺陷检测[J]. 计算机学报, 2013, 36(9): 1943-1952.
YAO M H, LI J, WANG X B.Solar cells surface defects detection using RPCA method[J]. Journal of computer science, 2013, 36(9): 1943-1952.
[16] AGHAMOHAMMADI A H, PRABUWONO A S, SAHRAN S, et al.Solar cell panel crack detection using particle swarm optimization algorithm[C]// 2011 International Conference on Pattern Analysis and Intelligence Robotics, Kuala Lumpur, Malaysia, 2011.
[17] TSAI D M, WU S C, CHIU W Y.Defect detection in solar modules using ICA basis images[J]. IEEE transactions on industrial informatics, 2013, 9(1): 122-131.

基金

国家自然科学基金(60741307)

PDF(2477 KB)

Accesses

Citation

Detail

段落导航
相关文章

/