基于风速时空关联的多步预测方法

潘超, 李润宇, 王典, 蔡国伟, 张友会

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 458-464.

PDF(1860 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1860 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 458-464. DOI: 10.19912/j.0254-0096.tynxb.2020-0410

基于风速时空关联的多步预测方法

  • 潘超1, 李润宇1, 王典1, 蔡国伟1, 张友会2
作者信息 +

MULTI-STEP WIND SPEED PREDICTION METHOD BASED ON WIND SPEED SPATIAL-TIME CORRELATION

  • Pan Chao1, Li Runyu1, Wang Dian1, Cai Guowei1, Zhang Yonghui2
Author information +
文章历史 +

摘要

基于风速的空间关联性提出一种新的多位置多步风速组合预测方法。对风场内各风力机进行灰色关联分析,并据此利用昆虫优化算法进行优选重构,获取目标风力机及临近域空间信息。利用卷积神经网络对重构矩阵进行空间特征提取,并输入长短时记忆网络进行多步预测。最后,将所提方法应用于不同风场进行风速预测,通过对比分析验证所提方法的预测精度和泛化能力。

Abstract

Ultra-short-term prediction for considering the spatial correlation of wind speed is a research hotspot for large-scale wind power grid connection. This paper proposes a new multi-position and multi-step combined wind speed prediction method based on the spatial correlation of wind speed. The grey correlation analysis on each wind turbine in the wind farm is carried out, and then the pity beetle algorithm is adopted to perform optimal and reconstruct to obtain the target wind turbine and its adjacent space information. The convolutional neural network is used to extract the spatial features of the reconstructed matrix, which are input the long-short-term memory networks for multi-step prediction. Finally, the method in this paper is applied to different wind farms for wind speed prediction. The prediction accuracy and generalization ability of the proposed method are verified through comparative analysis.

关键词

多步风速预测 / 灰色关联分析 / 长短时记忆网络 / 卷积神经网络 / 时空关联

Key words

multi-step wind speed prediction / grey correlation analysis / long-short-term memory networks / convolutional neural network / spatial-temporal correlation

引用本文

导出引用
潘超, 李润宇, 王典, 蔡国伟, 张友会. 基于风速时空关联的多步预测方法[J]. 太阳能学报. 2022, 43(2): 458-464 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0410
Pan Chao, Li Runyu, Wang Dian, Cai Guowei, Zhang Yonghui. MULTI-STEP WIND SPEED PREDICTION METHOD BASED ON WIND SPEED SPATIAL-TIME CORRELATION[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 458-464 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0410
中图分类号: TM721   

参考文献

[1] 潘超, 谭启德, 蔡国伟, 等. 基于递归量化分析的COA-SVR短期风速组合预测模型[J]. 电网技术, 2018, 42(8): 2373-2381.
PAN C, TAN Q D, CAI G W, et al.Hybrid short-term wind speed prediction model by COA-SVR based on recursive quantitative analysis[J]. Power system technology, 2018, 42(8): 2373-2381.
[2] 张妍, 王东风, 韩璞. 一种风电场短期风速组合预测模型[J]. 太阳能学报, 2017, 38(6): 1510-1516.
ZHANG Y, WANG D F, HAN P.Combination forecasting model of short-term wind speed for wind farm[J]. Acta energiae solaris sinica, 2017, 38(6): 1510-1516.
[3] 王杰, 何山, 王维庆, 等. 基于混合灰色理论的风速预测研究[J]. 太阳能学报, 2018, 39(12): 3544-3549.
WANG J, HE S, WANG W Q, et al.Study on wind speed prediction based on mixed grey theory[J]. Acta energiae solaris sinica, 2018, 39(12): 3544-3549.
[4] 沈小军, 周冲成, 吕洪. 基于运行数据的风电机组间风速相关性统计分析[J] . 电工技术学报, 2017, 32(16): 265-274.
SHEN X J, ZHOU C C, LYU H.Statistical analysis of wind speed correlation between wind turbines based on operating data[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 265-274.
[5] 王典, 潘超, 鹿丽, 等. 计及风-光时序相关特性的源-储并网阶段式规划策略[J]. 东北电力大学学报, 2020, 40(4): 1-10.
WANG D, PAN C, LU L, et al.Source-storage staged planning strategy considering wind-photovoltaic timing related characteristics[J]. Journal of Northeast Electric Power University, 2020, 40(4): 1-10.
[6] 冯双磊, 王伟胜, 刘纯, 等. 基于物理原理的风电场短期风速预测研究[J]. 太阳能学报, 2011, 32(5): 611-616.
FENG S L, WANG W S, LIU C, et al.Short term wind speed prediction based on physical principle[J]. Acta energiae solaris sinica, 2011, 32(5): 611-616.
[7] 周晓, 冬雷, 郝颖, 等. 基于膨胀腐蚀聚类方法的风电功率预测[J]. 太阳能学报, 2018, 39(12): 3536-3543.
ZHOU X, DONG L, HAO Y, et al.Wind power prediction based on dilation and erosion clustering method[J]. Acta energiae solaris sinica, 2018, 39(12): 3536-3543.
[8] SCHICKER I, PAPAZEK P, KANN A, et al.Short-range wind speed predictions for complex terrain using an interval-artificial neural network[J]. Energy procedia, 2017, 125: 199-206.
[9] WANG S X, ZHANG N, WU L, et al.Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network[J]. Renewable energy, 2016, 94: 629-636.
[10] 秦琼, 刘树洁, 赖旭, 等. GA优化ELM神经网络的风电场测风数据插补[J]. 太阳能学报, 2018, 39(8): 2125-2132.
QIN Q, LIU S J, LAI X, et al.Interpolation of wind speed data in wind farm based on GA optimized ELM neural network[J]. Acta energiae solaris sinica, 2018, 39(8): 2125-2132.
[11] LIU H, MI X W, LI Y F, et al.Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression[J]. Renewable energy, 2019, 143: 842-854.
[12] LIU H, MI X W, LI Y F.Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM[J]. Energy conversion and management, 2018, 159: 54-64.
[13] 杨茂, 黄宾阳, 江博. 基于概率分布量化指标和灰色关联决策的风电功率实时预测研究[J]. 中国电机工程学报, 2017, 37(24): 7099-7107.
YANG M, HUANG B Y, JIANG B.Real-time wind power prediction based on probability distribution and gray relational decision-making[J]. Proceedings of the CSEE, 2017, 37(24): 7099-7107.
[14] WANG H Z, LI G Q, WANG G B, et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied energy, 2017, 188: 56-70.
[15] 陈金富, 朱乔木, 石东源, 等. 利用时空相关性的多位置多步风速预测模型[J]. 中国电机工程学报, 2019, 39(7): 2093-2106.
CHEN J F, ZHU Q M, SHI D Y, et al.A multi-step wind speed prediction model for multiple sites leveraging spatio-temporal correlation[J]. Proceedings of the CSEE, 2019, 39(7): 2093-2106.
[16] ZHANG Z Z, ZOU J X, ZHANG G.Ultra-short term wind power prediction model based on modified grey model method for power control in wind farm[J]. Wind engineering, 2011, 35(1): 55-68.
[17] CADENAS E, JARAMILLO O A, RIVERA W.Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method[J]. Renewable energy, 2010, 35(5): 925-930.
[18] DING J, CHEN B, LIU H W, et al.Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE geoscience and remote sensing letters, 2016, 13(3): 364-368.
[19] 唐振浩, 赵赓楠, 曹生现, 等. 基于SWLSTM算法的超短期风向预测[J]. 中国电机工程学报, 2019, 39(15): 4459-4467.
TANG Z H, ZHAO G N, CAO S X, et al.Very short-term wind direction prediction via self-tuning wavelet long-short term memory neural network[J]. Proceedings of the CSEE, 2019, 39(15): 4459-4467.
[20] YANG M, ZHANG L B, CUI Y, et al.The impact of wind field spatial heterogeneity and variability on short-term wind power forecast errors[J]. Journal of renewable and sustainable energy, 2019, 11(3): 303-304.

基金

国家重点研发计划专项(2016YFB0900100)

PDF(1860 KB)

Accesses

Citation

Detail

段落导航
相关文章

/