双相体系果糖催化转化为5-羟甲基糠醛研究

蔡炽柳, 王海永, 李丹, 王晨光, 刘琪英, 马隆龙

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 49-54.

PDF(1547 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1547 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 49-54. DOI: 10.19912/j.0254-0096.tynxb.2020-0467

双相体系果糖催化转化为5-羟甲基糠醛研究

  • 蔡炽柳1~3, 王海永1~3, 李丹1~3, 王晨光1~3, 刘琪英1~3, 马隆龙1~3
作者信息 +

STUDY ON CATALYTIC CONVERSION OF FRUCTOSE TO 5-HYDROXYMETHYLFURFURAL IN TWO-PHASE SYSTEM

  • Cai Chiliu1-3, Wang Haiyong1-3, Li Dan1-3, Wang Chenguang1-3, Liu Qiying1-3, Ma Longlong1-3
Author information +
文章历史 +

摘要

以水-1,4-二氧六环为双相体系,催化果糖制取5-羟甲基糠醛,研究催化剂种类、反应时间、反应温度、水相体积、原料与催化剂比例、催化剂循环使用等不同因素对果糖制取5-羟甲基糠醛的影响。结果表明:当采用NaHSO4为催化剂、反应温度为140 ℃、反应时间为1 h时,5-羟甲基糠醛产率达到最高值,为83%。进一步探究以葡萄糖、纤维素为原料制备5-羟甲基糠醛的产率,分别为50%和30%。催化剂经4次重复使用后仍保持良好的催化活性。

Abstract

Taking water-1,4-dioxane as two phase solvent, 5-hydroxymethylfurfural(HMF) is produced by fructose dehydration. The effects of catalyst type, reaction time, reaction temperature, volume of water phase and ratio of raw material to catalyst, catalyst cycling on the preparation of 5-HMF are studied. The results show that the highest yield of HMF is 83% when taking NaHSO4 as catalyst, reaction temperature 140 ℃ and reaction time 1 h. The yield of HMF from glucose and cellulose conversion is 50% and 30%, respectively. After 4 times of reuse, the catalyst still has good catalytic activity.

关键词

果糖 / 脱水 / 双相 / 5-羟甲基糠醛 / 催化剂 / 生物质

Key words

fructose / dehydration / two phase / 5-hydroxymethylfurfural / catalyst / biomass

引用本文

导出引用
蔡炽柳, 王海永, 李丹, 王晨光, 刘琪英, 马隆龙. 双相体系果糖催化转化为5-羟甲基糠醛研究[J]. 太阳能学报. 2022, 43(2): 49-54 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0467
Cai Chiliu, Wang Haiyong, Li Dan, Wang Chenguang, Liu Qiying, Ma Longlong. STUDY ON CATALYTIC CONVERSION OF FRUCTOSE TO 5-HYDROXYMETHYLFURFURAL IN TWO-PHASE SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 49-54 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0467
中图分类号: TK6   

参考文献

[1] VENTURA M, DIBENEDETTO A, ARESTA M.Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water[J]. Inorganica chimica acta, 2018, 470: 11-21.
[2] 姜楠, 齐崴, 黄仁亮, 等. 生物质制备5-羟甲基糠醛的研究进展[J]. 化工进展, 2011, 30(9): 1937-1945.
JIANG N, QI W, HUANG R L, et al.Research progress of synthesis of 5-hydroxymethylfurfural from biomass[J]. Chemical industry and engineering progress, 2011, 30(9): 1937-1945.
[3] 孔令照, 苗改, 罗虎, 等. 生物质水热催化制备重要含氧化学品研究进展[J]. 高等学校化学学报, 2020, 41(1): 11-18.
KONG L Z, MIAO G, LUO H, et al.Advances in hydrothermal catalysis conversion of biomass into oxygen-containing chemicals[J]. Chemical journal of Chinese universities, 2020, 41(1): 11-18.
[4] SHEN F, SUN S, ZHANG X, et al.Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose[J]. Cellulose, 2020, 27(2): 1-11.
[5] HUANG F, SU Y, LONG Z, et al.Enhanced formation of 5-hydroxymethylfurfural from glucose using a silica-supported phosphate and iron phosphate heterogeneous catalyst[J]. Industrial & engineering chemistry research, 2018, 57(31): 10198-10205.
[6] WATANIYAKUL P, BOONNOUN P, QUITAIN A T, et al.Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural[J]. Catalysis communications, 2018, 104: 41-47.
[7] ZHANG Z, WANG Q, XIE H, et al.Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium (iv) chloride in ionic liquids[J]. ChemSusChem, 2011, 4(1): 131-138.
[8] FENG Y C, ZUO M, ZENG X H, et al.Preparation of 5-hydroxymethylfurfural from glucose[J]. Progress in chemistry, 2018, 30(2-3): 314-324.
[9] ROMÁN-LESHKOV Y, DUMESIC J A. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts[J]. Topics in catalysis, 2009, 52(3): 297-303.
[10] ROMÁN-LESHKOV Y, BARRETT C J, LIU Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-985.
[11] NIKOLLA E, ROM N-LESHKOV Y, MOLINER M, et al. “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite[J]. ACS catalysis, 2011, 1(4): 408-410.
[12] DENG W, ZHANG Q, WANG Y.Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids[J]. Catalysis today, 2014, 234: 31-41.
[13] LUECKGEN J, VANOYE L, PHILIPPE R, et al.Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor[J]. Journal of flow chemistry, 2018, 8(1): 3-9.
[14] JING G, QUAN C, GUO X, et al.The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: a theoretical study[J]. Computational & theoretical chemistry, 2011, 963(2): 453-462.
[15] SUN K, SHAO Y W, LI Q Y, et al.Importance of the synergistic effects between cobalt sulfate and tetrahydrofuran for selective production of 5-hydroxymethylfurfural from carbohydrates[J]. Catalysis science & technology, 2020, 10(7): 2293-2302.
[16] ZHAO H, YE X X, YAN R, et al.Direct conversion of glucose to 5-hydroxymethylfurfural over zirconium phosphate catalyst in a biphasic system[J]. China petroleum processing & petrochemical technology, 2018, 20(2): 6-14.
[17] MATHARU A S, AHMED S, ALMONTHERY B, et al.Starbon/high-amylose corn starch-supported n-heterocyclic carbene-iron (iii) catalyst for conversion of fructose into 5-hydroxymethylfurfural[J]. ChemSusChem, 2018, 11(4): 716-725.
[18] ESTEBAN J, VORHOLT A, JLEITNER W.An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural:a rational selection of solvents using cosmo-rs and selection guides[J]. Green chemistry, 2020, 22(7): 2097-2128.
[19] QIAN Z, LEI W, ZHAO S, et al.High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst[J]. Fuel, 2011, 90(6): 2289-2293.
[20] YU Y, HU C, WABU-OMAR M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system[J]. Green chemistry, 2012, 14(2): 509-513.
[21] SHI N, LIU Q, ZHANG Q, et al.High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green chemistry, 2013, 15(7): 1967-1974.
[22] LEWKOWSKI J.Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives[J]. 2001, 2(6): 17-54.
[23] DEE S JBELL A T. A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins[J]. ChemSusChem, 2011, 4(8): 1166-1173.

基金

国家重点研发计划项目子课题(2019YFC1905303); 国家自然科学基金(51976220); 广东省自然科学基金(2017A030308010); 中科院洁净能源创新研究院合作基金(DNL180302)

PDF(1547 KB)

Accesses

Citation

Detail

段落导航
相关文章

/