基于运行曲线的机械式风力提水机组匹配性设计方法研究

陈雷, 邢作霞, 陈明阳, 徐健, 王湘明

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 465-470.

PDF(1669 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1669 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 465-470. DOI: 10.19912/j.0254-0096.tynxb.2020-0469

基于运行曲线的机械式风力提水机组匹配性设计方法研究

  • 陈雷, 邢作霞, 陈明阳, 徐健, 王湘明
作者信息 +

RESEARCH ON MATCHING DESIGN METHOD OF MECHANICAL WIND-DRIVEN PUMPING UNIT BASED ON OPERATION CURVE

  • Chen Lei, Xing Zuoxia, Chen Mingyang, Xu Jian, Wang Xiangming
Author information +
文章历史 +

摘要

为改善风力提水机组设计中的部件匹配性问题,提高提水机组运行效率,提出一种机泵分离式风力提水机组匹配性设计方法。通过各部件运行曲线之间的工作点追踪与交叉确定风轮、空气压缩机以及隔膜泵之间相匹配的最佳设计点。并依照该方法设计试验样机,通过对样机的监测,各个运行参数之间的相关性与理论一致,样机运行稳定。该匹配性设计方法可普遍适用于机泵分离式风力提水机组,提高机组的寿命和运行效率。

Abstract

In order to improve the matching problems between components in the design process of wind-driven water lifting unit and improve the operating efficiency of the unit, a matching design method of pump separation is proposed. The optimal design matching point between the wind turbine, air compressor and diaphragm pump is determined by tracing and crossing the working points between the operating curves of each component. The test prototype is designed according to the method. By monitoring the prototype, the correlations between various parameters is consistent with the theory, and the prototype runs stably. The method can be widely applied to improve the service life and operation efficiency of the Pump separated unit.

关键词

风力机 / 适配性设计 / 曲线拟合 / 风力提水 / 空气压缩机 / 隔膜泵 / 机泵分离

Key words

wind turbines / pattern matching design / curve fitting / wind-driven water lifting / air compressors / diaphragm pump / machine pump separation

引用本文

导出引用
陈雷, 邢作霞, 陈明阳, 徐健, 王湘明. 基于运行曲线的机械式风力提水机组匹配性设计方法研究[J]. 太阳能学报. 2022, 43(2): 465-470 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0469
Chen Lei, Xing Zuoxia, Chen Mingyang, Xu Jian, Wang Xiangming. RESEARCH ON MATCHING DESIGN METHOD OF MECHANICAL WIND-DRIVEN PUMPING UNIT BASED ON OPERATION CURVE[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 465-470 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0469
中图分类号: U664.21   

参考文献

[1] 刘惠敏, 吴永忠, 刘伟. 风力提水与风力发电提水技术[J]. 可再生能源, 2005(3): 59-61.
LIU H M, WU Y Z, LIU W.Wind power pumping water and wind turbine pumping water technology[J]. Renewable energy resources, 2005(3): 59-61.
[2] 邢作霞, 陈雷, 孙宏利, 等. 独立变桨距控制策略研究[J]. 中国电机工程学报, 2011, 31(26): 131-138.
XING Z X, CHEN L, SUN H L, et al.Strategies study of individual variable pitch control[J]. Proceedings of the CSEE, 2011, 31(26): 131-138.
[3] JOSELIN HERBERT G M, INIYAN S, SREEVALSAN E. A review of wind energy technologies[J]. Renewable & sustainable energy reviews, 2007, 11(6): 1117-1145.
[4] 李有雯, 席静, 王静, 等. 风能利用技术的研究综述[J].山东化工, 2019, 48(18): 124-125.
LI Y W, XI J, WANG J, et al.Review of wind energy utilization technology[J]. Shandong chemical industry, 2019, 48(18): 124-125.
[5] 胡建栋, 邹占武, 徐双信. FSH-400型风力提水机组的设计试验研究[J]. 太阳能学报, 2013, 34(5): 895-901.
HU J D, ZOU Z W, XU S X.Design test and research of FSH-400 type wind power water pumping machine[J]. Acta energiae solaris sinica, 2013, 34(5): 895-901.
[6] 杜福银. 基于神经网络的风力辅助提水系统自适应PID解耦控制[J]. 农业工程学报, 2012, 28(4): 165-168.
DU F Y.Adaptive PID decouple control strategy for wind power aided pumping water system based on neural network[J]. Transactions of the CSAE, 2012, 28(4): 165-168.
[7] 高翀恒, 郑源, 李中杰. 新型高效风力提水装置风洞实验[J]. 南水北调与水利科技, 2016, 14(6): 196-200.
GAO J H, ZHENG Y, LI Z J.Wind tunnel test of a novel high efficiency wind water device[J]. South-to-north water transfers and water science & technology, 2016, 14(6): 196-200.
[8] 钱为, 徐政, 陈锐坚. 风光互补提水系统的研究与开发[J]. 太阳能学报, 2019, 40(9): 2479-2485.
QIAN W, XU Z, CHEN R J.Research and development of hybrid pv-wind pumping systems[J]. Acta energiae solaris sinica, 2019, 40(9): 2479-2485.
[9] 蔡良锥. 机泵分离式风力气动提水机的设计与研究[D]. 福州: 福建农林大学, 2012.
CAI L Z.The design and research of compressor-pump separated wind pneumatic water-pumping machine[D]. Fuzhou: Fujian Agricultural and Forestry University, 2012.
[10] 陈志雄, 胡文杰, 刘珍珍, 等. 基于风力的新型对称式八行程提水机结构[J]. 科技通报, 2017, 33(10): 161-164.
CHEN Z X, HU W J, LIU Z Z, et al.A new water pump structure of symmetrical eight trips based on wind power[J]. Bulletin of science and technology, 2017, 33(10): 161-164.
[11] 宋力, 王锦龙, 王睿哲, 等. 柔性叶片风力提水装置叶轮气动特性研究[J]. 可再生能源, 2015, 33(8): 1179-1184.
SONG L, WANG J L, WANG R Z, et al.Research of vane wheel aerodynamic characteristics on wind pumping water equipment with flexible blade[J]. Renewable energy resources, 2015, 33(8): 1179-1184.
[12] 张礼达, 任腊春, 陈荣盛, 等. 风力机叶片外形设计及三维实体建模研究[J]. 太阳能学报, 2008, 29(9): 1177-1180.
ZHANG L D, REN L C, CHEN R S, et al.Shape design and 3D modeling study for blades of wind turbine[J]. Acta energiae solaris sinica, 2008, 29(9): 1177-1180.
[13] 段先锋. 直驱永磁同步风力发电系统低电压穿越的研究[D]. 西安: 西安理工大学, 2009.
DUAN X F.Low voltage ride-through of directly driven wind turbine with permanent magnet synchronous generator[D]. Xi'an: Xi'an University of Technology, 2009.
[14] 谢跃清. 空气压缩机性能参数检测仪研究[D]. 大连: 大连理工大学, 2008.
XIE Y Q.The research of parameters detector of air compressor performance[D]. Dalian: Dalian University of Technology, 2008.
[15] 张影. 垂直轴风力发电机塔架结构动力特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.
ZHANG Y.Analysis of dynamic characteristics of vertical-axis wind turbine tower structure[D]. Harbin: Harbin Insitute of Technology, 2012.

基金

辽宁省风力发电技术重点实验室项目(2019JH8/10100068)

PDF(1669 KB)

Accesses

Citation

Detail

段落导航
相关文章

/