由于二次动态矩阵控制(quadratic dynamic matrix control,QDMC)算法中二次规划求解计算量大、实时性差等问题,难以满足液压型风力发电机组变量马达转速的高精度快速控制需求。该文提出一种双重速率二次动态矩阵控制算法(dual rate QDMC,DR-QDMC),将控制增量的求解分解为快速层和慢速层2个时间尺度进行,利用AMESim-Simulink/Matlab联合仿真平台构建液压型风力发电机组的AMESim仿真模型并研究分析DR-QDMC算法性能。仿真实验结果表明,DR-QDMC算法不仅可增强系统控制实时性,而且还能提升变量马达转速控制的快速性和抗扰性。
Abstract
Due to large calculation and poor real-time property in the Quadratic Dynamic Matrix Control (QDMC) algorithm, it is difficult to achieve high precision and fast control requirements of variable motor speed of hydraulic wind turbines. In this paper, a Dual Rate QDMC (DR-QDMC) algorithm is proposed to decompose the control increment calculation into two time scales: the fast layer and the slow layer. With the AMESim-Simulink/Matlab joint simulation platform, the simulation model of hydraulic wind turbine is constructed to validate performance of the DR-QDMC algorithm. The simulation experiments indicate that the DR-QDMC algorithm can enhance real-time capability, and improve rapidity and immunity of variable motor speed control.
关键词
风力发电机组 /
液压传动 /
速度控制 /
动态矩阵控制 /
双速率框架
Key words
wind turbines /
hydraulic transmission /
speed control /
dynamic matrix control /
double speed frame
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LEE J, ZHAO F.Global wind report 2021[R]. Brussels: Global Wind Energy Council, 2021.
[2] 艾超, 闫桂山, 孔祥东, 等. 液压型风力发电机组恒转速输出补偿控制[J]. 中国机械工程, 2015, 26(9): 1189-1193.
AI C, YAN G S, KONG X D, et al.Constant speed output compensation control of hydraulic wind turbine[J]. China mechanical engineering, 2015, 26(9): 1189-1193.
[3] 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304-4314.
TANG X S, MIAO F F, QI Z P, et al.A review on frequency modulation technology of wind power generation[J]. Proceedings of the CSEE, 2014, 34(25): 4304-4314.
[4] LIU X, KONG X.Nonlinear model predictive control for DFIG-based wind power generation[J]. IEEE transactions on automation science and engineering, 2014, 11(4): 1046-1055.
[5] 王多睿, 王维庆, 蔡鑫. 基于NMPC-PID的风力机独立变桨距控制策略研究[J]. 太阳能学报, 2017, 38(9): 2520-2526.
WANG D R, WANG W Q, CAI X.Research on independent variable pitch control strategy of wind turbine based on NMPC-PID[J]. Acta energiae solaris sinica, 2017, 38(9): 2520-2526.
[6] 刘兴杰, 王伟, 郭九旺, 等. 永磁直驱风电机组有功功率预测控制方法研究[J]. 太阳能学报, 2018, 39(1): 210-217.
LIU X J, WANG W, GUO J W, et al.Study on the predictive control method of active power of permanent magnet direct-drive wind turbine[J]. Acta energiae solaris sinica, 2018, 39(1):210-217.
[7] 席裕庚. 预测控制[M]. 第2版. 北京: 国防工业出版社, 2012.
XI Y G.Predictive control[M]. 2rd edition. Beijing: Nation Defense Industry Press, 2012.
[8] RAMDANI A, GROUNI S.Dynamic matrix control and generalized predictive control, comparison study with IMC-PID[J]. International journal of hydrogen energy, 2017, 42(28): 17561-17570.
[9] 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.
XI Y G, LI D W, LIN S.Model predictive control-status quo and challenges[J]. Acta automatica sinica, 2013, 39(3):222-236.
[10] 王曦, 李德伟, 席裕庚. 采用双速率框架的快速预测控制算法[J]. 控制理论与应用, 2016, 33(1): 13-22.
WANG X, LI D W, XI Y G.A fast predictive control algorithm based on a two-rate framework is proposed[J]. Control theory & applications, 2016, 33(1): 13-22.
[11] 王宜举, 修乃华. 非线性最优化理论与方法[M]. 第3版. 北京: 科学出版社, 2019.
WANG Y J, XIU N H.Nonlinear optimization theory and method[M]. 3rd edition. Beijing: Science Press, 2019.
[12] WEI L, LIU Z, ZHAO Y, et al.Modeling and control of a 600 kW closed hydraulic wind turbine with an energy storage system[J]. Applied sciences, 2018, 8(8): 1314-1331.
[13] 刘增光. 600 kW液压蓄能式风力发电机组设计与控制研究 [D]. 兰州: 兰州理工大学, 2018.
LIU Z G.Research on design and control of a 600 kW hydraulic wind turbine with an energy storage system[D]. Lanzhou: Lanzhou University of Technology, 2018.
[14] 兰州理工大学. 用于静液储能式液压传动型风力发电机组的控制系统: 中国, CN108131249B[P].2018-06-08.
Lanzhou University of Technology. Control system for hydraulic driven wind turbine based on hydrostatic energy storage: China, CN108131249B[P].2018-06-08.