传统玻璃幕墙房间昼夜温差大、供暖能耗高,该文提出一种墙体-屋面组合式蓄热通风墙。建立该结构的传热数学模型,对屋面倾斜角度、通风孔尺寸、风机风速等影响因素进行优化分析,对比墙体-屋面组合式蓄热通风墙与传统玻璃幕墙房间的室内热环境及热负荷。结果表明:综合考虑总供热量和对流换热量,通风孔尺寸为250 mm×250 mm最佳;屋面倾斜角度和风机风速分别为45°和1.0 m/s时,蓄热通风墙的供热能力最佳。相比传统玻璃幕墙,墙体-屋面组合式蓄热通风墙房间自然室温保持在15 ℃以上的时间延长了约3.5 h,室温波动缩小了约3 ℃,昼夜温差明显减小;蓄热通风墙房间的热负荷降低了约40.7%。
Abstract
In view of the problems of the traditional glass curtain wall, such as large heat loss,temperature varying widely from day to night and large heating energy consumption, a wall-roof combined heat storage ventilation structure (WRHSV) is proposed. The heat transfer mathematical model of the new structure is established. The factors such as the inclination angle of the roof, the size of ventilation hole and the ventilation speed are optimized and analyzed. The indoor thermal environment and heat load of the room using WRHSV are compared with those using the traditional glass curtain wall. The results show that the total heat transfer and the convective heat transfer are both the largest when the dimension of the ventilation hole of WRHSV is 250 mm × 250 mm. When the slope angle of the roof and ventilation speed is 45°and 1.0 m/s, respectively, the heat supply capacity of WRHSV is the largest. Compared with the traditional glass curtain wall, the time for the room temperature maintaining above 15 ℃ is extended by 3.5 h, the temperature fluctuation is reduced by 3 ℃, the temperature difference between day and night is significantly reduced, and the heat load of the room is reduced by 40.7% when WRHSV is used.
关键词
被动太阳能 /
热性能 /
太阳能供暖 /
数值模拟 /
蓄热通风墙
Key words
passive solar energy /
thermal performance /
solar heating /
numerical simulation /
heat storage ventilation wall
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张元飞. 建筑玻璃幕墙节能技术研究[J]. 科技创业家, 2014, 5(9): 56.
ZHANG Y F.Research on energy saving technology of building glass curtain wall[J]. Technological pioneers, 2014, 5(9): 56.
[2] REYNER B.The architecture of the well-tempered environment[M]. Chicago: University of Chicago Press, 1969.
[3] JIRU T E, HAGHIGHAT F.Modeling ventilated double skin fagade—A zonal approach[J]. Energy and buildings, 2008, 40(8): 1567-1576.
[4] MINGOTTI N, CHENVIDYAKARN T, WOODS A W.The fluid mechanics of the natural ventilation of a narrow-cavity double-skin facade[J]. Building and environment, 2011, 46(4): 807-823.
[5] 刘志宏, 李俊明, 王补宣, 等. 外循环式双层玻璃幕墙的热工性能研究[J]. 建筑科学, 2010, 26(4): 75-79.
LIU Z H, LI J M, WANG B X, et al.Study on thermal performance of double-skin facade with outer circular[J]. Building science, 2010, 26(4): 75-79.
[6] 王汉青, 陈裕, 寇广孝, 等. 外呼吸玻璃幕墙热工特性和能耗分析[J]. 暖通空调, 2009, 39(10): 48-51.
WANG H Q, CHEN Y, KOU G X, et al.Thermal characteristics and energy consumption analysis of external respiration double-skin facades[J]. Heating, ventilation and air conditioning, 2009, 39(10): 48-51.
[7] 杜苗. 呼吸式幕墙在寒冷地区的热工性能研究[D]. 天津: 天津大学, 2007.
DU M.Study on thermal performance of breathing curtain wall in cold area[D]. Tianjin: Tianjin University, 2007.
[8] 孙跃强, 周志华, 杜苗. 呼吸式玻璃幕墙在寒冷地区的应用[J]. 煤气与热力, 2008, 28(1): 15-17.
SUN Y Q, ZHOU Z H, DU M.Application of breathing glass curtain wall in cold region[J]. Gas and heat, 2008, 28(1): 15-17.
[9] 佟克龙. 基于Trombe墙原理——建筑生态幕墙的研究[J]. 广东土木与建筑, 2018, 25(9): 55-58.
TONG K L.Based on the principle of trombe wall -Study on the architectural ecological curtain wall[J]. Guangdong architecture civil engineering, 2018, 25(9): 55-58.
[10] 王婷婷. 集热蓄热屋顶式太阳房热过程及优化设计[D]. 西安: 西安建筑科技大学, 2015.
WANG T T.Thermal process and optimization design for solar house with Trombe roof[D]. Xi'an: Xi'an University of Architecture and Technology, 2015.
[11] 贺平, 孙刚, 王飞, 等. 供热工程[M]. 第四版. 北京: 中国建筑工业出版设, 2009.
HE P, SUN G, WANG F, et al.Heating engineering[M]. 4th ed. Beijing: China Architecture and Building Press, 2009.
[12] DBJ 540001-2016, 西藏自治区民用建筑节能设计标准[S].
DBJ 540001-2016, Design standard for energy efficiency of civil buildings in Tibet[S].
[13] DIARCE G, CAMPOS-CELADOR A, MARTIN K, et al.A comparative study of the CFD modeling of a ventilated active facade including phase change materials[J]. Applied energy, 2014, 126: 307-317.
[14] ANSYS Inc.Lecture 4-natural convection[R]. ANSYS Fluent Customer Training Material, 2010.
[15] 孙丹. 新型被动式太阳能相变集热蓄热墙系统研究[D]. 大连: 大连理工大学, 2016.
SUN D.Research on a new passive solar collector-storage wall system with phase change materials[D]. Dalian: Dalian University of Technology, 2016.
[16] YUAN W, JI J, MODJINOU M, et al.Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material[J]. Applied energy, 2018, 232: 715-727.
[17] 宋菁菁. 节约型建筑设计策略研究[D]. 上海: 同济大学, 2006.
SONG J J.Study on the strategy of economical architectural design[D]. Shanghai: Tongji University, 2006.
基金
陕西省重点研发计划(2018ZDCXL-SF-03-01); 陕西省杰出青年基金项目(2020JC-43); 陕西省自然科学基础研究基金青年人才项目(2019JQ-768)