通过对光煤互补发电机组的集热子系统、汽轮机子系统和锅炉子系统进行建模,研究在多种典型集成方式下,太阳能热输入对锅炉变工况特性及机组热经济性的影响。结果表明,当太阳能热集成于锅炉再热器之前,太阳能热输入将导致锅炉再热温度下降,影响锅炉安全性与机组热经济性;而若将太阳能热集成于锅炉再热器之后,太阳能热输入不影响主蒸汽和再热蒸汽温度。其中,当太阳能热用于取代第三级抽汽时,系统循环比功、系统标准煤耗率和太阳能热电转化效率均优于太阳能热取代第一级抽汽。通过案例分析,当太阳能热完全取代第三级抽汽时,机组的标准煤耗率减小7.95 g/kWh,太阳能热电转化效率可保持在约39%。
Abstract
The sub-systems of solar field, turbine and boiler in a solar-aided power generation system were modeled in this paper. And the performance of the boiler and thermal economic of the system were analyzed in a variety of typical integration solar heat input modes. The results indicate when solar heat is arranged before re-heaters, solar heat input will cause the reheating temperature of the boiler to drop which sacrifices the safety of the boiler and thermal economic of the system. However, when solar heat is arranged after re-heaters, solar heat input will have no influence on the temperatures of the main stream and reheated steam. Using solar heat to replace the 3rd-stage extraction steam is better than to replace the 1st-stage extraction steam in terms of the cycle specific work of the system, the standard coal consumption rate and the thermal-to-electricity efficiency. Finally, the case study shows when the 3rd-stage extraction steam is totally replaced by solar heat, the standard coal consumption rate decreases to 7.95 g/kWh, and the solar heat-to-electricity efficiency remains around 39%.
关键词
锅炉 /
太阳能 /
节能 /
变工况 /
热经济性
Key words
boiler /
solar energy /
energy conservation /
off-design /
thermal economy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HU E, YANG Y P, NISHIMURA A, et al.Solar thermal aided power generation[J]. Applied energy, 2010, 87(9): 2881-2885.
[2] YING Y P, HU E.Thermodynamic advantages of using solar energy in the regenerative Rankine power plant[J]. Applied thermal engineering, 1999, 19(11): 1173-1180.
[3] QIN J Y, HU E, NATHAN G J, et al.Mixed mode operation for the solar aided power generation[J]. Applied thermal engineering, 2018, 139:177-186.
[4] GUPTA M K, KAUSHIK S C.Exergetic utilization of solar energy for feed water preheating in a conventional thermal power plant[J]. International journal of energy research, 2009, 33(6): 593-604.
[5] ZHAI R R, LIU H T, LI C, et al.Analysis of a solar-aided coal-fired power generation system based on thermo-economic structural theory[J]. Energy, 2016, 102: 375-387.
[6] LI J L, WU Z Y, ZENG K, et al.Safety and efficiency assessment of a solar-aided coal-fired power plant[J]. Energy conversion and management, 2017, 150: 714-724.
[7] WU J J, HOU H J, YANG Y P, et al.Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity[J]. Applied energy, 2015, 157: 123-133.
[8] WU J J, HOU H J, YANG Y P.Annual economic performance of a solar-aided 600 MW coal-fired power generation system under different tracking modes, aperture areas, and storage capacities[J]. Applied thermal engineering, 2016, 104: 319-332.
[9] ZHAO Y W, HONG H, JIN H G.Mid and low-temperature solar-coal hybridization mechanism and validation[J]. Energy, 2014, 74: 78-87.
[10] WU J J, HOU H J, YANG Y P.The optimization of integration modes in solar aided power generation (SAPG) system[J]. Energy conversion and management, 2016, 126: 774-789.
[11] HOU H J, YU Z Y, YANG Y P, et al.Performance evaluation of solar aided feedwater heating of coal-fired power generation(SAFHCPG) system under different operating conditions[J]. Applied energy, 2013, 112: 710-718.
[12] 车德福. 锅炉[M]. 第2版. 西安: 西安交通大学出版社, 2008.
CHE D F.Boiler[M]. 2nd Edition. Xi'an: Xi'an Jiaotong University Press, 2008.
基金
国家自然科学基金(51906098); 南京市留学人员科技创新项目择优项目; 南京工程学院引进人才科研启动基金(YKJ201817)