适合于太阳能热发电的锰铁锂复合金属氧化物储热特性与热化学反应机理

肖刚, 彭记康, 袁鹏, 向铎, 倪明江

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 119-124.

PDF(2168 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2168 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 119-124. DOI: 10.19912/j.0254-0096.tynxb.2021-0047

适合于太阳能热发电的锰铁锂复合金属氧化物储热特性与热化学反应机理

  • 肖刚, 彭记康, 袁鹏, 向铎, 倪明江
作者信息 +

CHARACTERISTICS AND THERMOCHEMICAL REACTION MECHANISM OF MANGANESE-IRON-LITHIUM COMPOSITE METAL OXIDE SUITABLE FOR SOLAR THERMAL POWER GENERATION

  • Xiao Gang, Peng Jikang, Yuan Peng, Xiang Duo, Ni Mingjiang
Author information +
文章历史 +

摘要

提出在锰基氧化物中添加Fe203和Li20,构建锰铁锂三元复合金属氧化物,降低热化学储热反应温度,更好地满足新一代太阳能热发电系统需求。实验发现,与Mn2O3相比,新生成的Li2FeMn3O8复合氧化物的还原反应初始温度由773℃降低至622℃;还原反应活化能从797.10 kJ/mol降低至132.44kJ/mol;氧化反应由难以进行,变为从590℃开始进行;氧化放热量增至209.40 kJ/kg;经过105次循环后仍保持良好的循环反应稳定性。

Abstract

The iron and lithium oxideswere added to the manganese-based oxide to reduce the reaction temperature for thermochemical energy storage, facilitating development of the new generation technologyof solar thermal power. Comparingwith Mn2O3, the initial reduction temperature ofthe new composite, Li2FeMn3O8, decreased from 773℃ to 622 ℃ experimentally, withthe activation energy from 797.10 kJ/mol to 132.44 kJ/mol. The oxidation temperature decreased to 590 ℃, whilethe oxidation reaction heat increased up to 209.40 kJ/kg. The new composite showed an excellent reaction stability after 105 experimental cycles.

关键词

热化学 / 金属氧化物 / 反应动力学 / 储热温度 / 锰铁锂

Key words

thermochemistry / metal oxide / reaction kinetics / thermal storage temperature / manganese-iron-lithium

引用本文

导出引用
肖刚, 彭记康, 袁鹏, 向铎, 倪明江. 适合于太阳能热发电的锰铁锂复合金属氧化物储热特性与热化学反应机理[J]. 太阳能学报. 2022, 43(11): 119-124 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0047
Xiao Gang, Peng Jikang, Yuan Peng, Xiang Duo, Ni Mingjiang. CHARACTERISTICS AND THERMOCHEMICAL REACTION MECHANISM OF MANGANESE-IRON-LITHIUM COMPOSITE METAL OXIDE SUITABLE FOR SOLAR THERMAL POWER GENERATION[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 119-124 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0047
中图分类号: TK513.3   

参考文献

[1] BARLEV D, VIDU R, STROEVE P.Innovation in concentrated solar power[J]. Solar energy materials & solar cells, 2010, 95(10): 2703-2725.
[2] PARDO P, DEYDIER A, MINVIELLEANXIONNAZ Z, et al.A review on high temperature thermochemical heat energy storage[J]. Renewable & sustainable energy reviews, 2014, 32(5): 591-610.
[3] PAGKOURA C, KARAGIANNAKIS G, ZYGOGIANNI A, et al.Cobalt oxide based honeycombs as reactors/heat exchangers for redox thermochemical heat storage in future CSP plants[J]. Energy procedia, 2015, 69: 978-987.
[4] ALONSO E, PÉREZ-RÁBAGO C, LICURGO J, et al. First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage[J]. Solar energy, 2015, 115: 297-305.
[5] WONG B, BROWN L, SCHAUBE F, et al.Oxide based thermochemical heat storage[C]//Proceedings of Solar PACES 2010, Perpignan, France, 2010.
[6] ANDRÉ L, ABANADES S, FLAMANT G.Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable & sustainable energy reviews, 2016, 64: 703-715.
[7] PRIETO C, COOPER P, FERNANDEZ A I, et al.Review of technology: thermochemical energy storage for concentrated solar power plants[J]. Renewable & sustainable energy reviews, 2016, 60: 909-929.
[8] AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: testing of cobalt oxide-based powders[J]. Solar energy, 2014, 102(4): 189-211.
[9] AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers[J]. Solar energy, 2015, 114(1): 440-458.
[10] AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers[J]. Solar energy, 2015, 114(45): 459-475.
[11] CARRILLO A J, SERRANO D P, PIZARRO P, et al.Design of efficient Mn-based redox materials for thermochemical heat storage at high temperatures[C]//SolarPACES 2015, Cape Town, South Africa, 2015.
[12] GOKON N, NISHIZAWA A, YAWATA T, et al.Fe-doped manganese oxide redox material for thermochemical energy storage at high-temperatures[C]//SolarPACES 2018, Casablanca, Morocco, 2018.
[13] HAMIDI M, BAYON A, KREIDER P, et al.Reduction kinetics for large spherical 2:1 iron-manganese oxide redox materials for thermochemical energy storage[J]. Chemical engineering science, 2019, 201: 74-81.
[14] 宋兴福, 汪瑾, 罗妍, 等. 六氨氯化镁热解过程及其非等温动力学[J]. 化工学报, 2008, 59(9): 2255-2259.
SONG X F, WANG J, LUO Y, et al.Thermal decomposition and non-isothermal kinetic evaluation of magnesium chloride hexammoniate[J]. Journal of chemical industry & engineering, 2008, 59(9): 2255-2259.
[15] 胡荣祖. 热分析动力学[M]. 北京: 科学出版社, 2008: 255.
HU R Z.Thermal analysis kinetics[M]. Beijing: Science Press, 2008: 255.
[16] 彭记康. 基于三元金属氧化物的热化学储热反应特性和温度调控机制[D]. 杭州: 浙江大学, 2021.
PENG J K.Thermochemical heat storage reaction characteristics and temperature control mechanism based on ternary metal oxides[D]. Hangzhou: Zhejiang University, 2021.

基金

浙江省杰出青年基金(LR20E060001); 国家自然科学基金创新研究群体项目(51621005)

PDF(2168 KB)

Accesses

Citation

Detail

段落导航
相关文章

/