河北献县东部雾迷山组碳酸盐岩热储酸化压裂试验研究

秦祥熙, 张萌, 王贵玲, 石建省

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 383-391.

PDF(3219 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3219 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 383-391. DOI: 10.19912/j.0254-0096.tynxb.2021-0152

河北献县东部雾迷山组碳酸盐岩热储酸化压裂试验研究

  • 秦祥熙1~3, 张萌3, 王贵玲1, 石建省4
作者信息 +

STUDY ON ACID FRACTURING TEST OF CARBONATE RESERVOIRS OF WUMISHAN FORMATION IN WESTERN XIAN COUNTY, HEBEI

  • Qin Xiangxi1~3, Zhang Meng3, Wang Guiling1, Shi Jiansheng4
Author information +
文章历史 +

摘要

通过对河北献县东部雾迷山组碳酸盐岩进行大尺寸高地应力酸化压裂物理模拟试验与小尺寸温度应力耦合环境下酸化压裂试验,讨论地应力、温度、酸液排量以及压裂模式等因素与碳酸盐岩压裂效果之间的关系,找到碳酸盐岩储层压裂裂缝的生长规律。研究表明:将裂缝发育与裂缝不发育储层碳酸盐岩压裂曲线对比发现,储层岩石裂缝发育程度可明显降低破裂压力;压裂试验中储层岩石内裂缝激活对破裂压力具有显著影响,现场压裂过程中应当考虑到储层工程地质中裂缝发育程度的问题;酸液处理可显著降低破裂压力,更有利于形成复杂裂缝网络,破裂过程中诱发更多声发射事件,同时储层岩石裂缝发育程度直接影响到压裂效果。

Abstract

In this paper, the relationship between the factors of rock stress, temperature, acid discharge as well as fracturing mode and the fracturing effect of carbonate rock was discussed through the experimental test of acid fracturing with high rock stress in large size samples and the acid fracturing test under the coupled temperature-stress environment in small size carbonate rock of Wuzhishan formation in western Xian County, Hebei, China, to find the growth law of fracturing fractures in carbonate reservoir, and the main conclusions were drawn as following: Comparing the fracture development with the fracture curves of carbonate rock fracturing in the fractured reservoir, we found that the fracture development of the reservoir rock can significantly reduce the fracture pressure; Fracture activation within the reservoir rock in fracturing tests has a significant effect on the fracture pressure, and the degree of fracture development in the reservoir engineering geology should be considered in the field fracturing process; Acid treatment can significantly reduce the fracture pressure, which is more conducive to the formation of complex fracture networks and induce more acoustic emission events during fracturing; meanwhile, the degree of fracture development in reservoir rocks directly affects the fracturing effect.

关键词

地热水资源 / 碳酸盐岩 / 地热井 / 酸化压裂 / 试验研究

Key words

geothermal water resources / carbonates / geothermal wells / acid fracturing / experimental research

引用本文

导出引用
秦祥熙, 张萌, 王贵玲, 石建省. 河北献县东部雾迷山组碳酸盐岩热储酸化压裂试验研究[J]. 太阳能学报. 2022, 43(11): 383-391 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0152
Qin Xiangxi, Zhang Meng, Wang Guiling, Shi Jiansheng. STUDY ON ACID FRACTURING TEST OF CARBONATE RESERVOIRS OF WUMISHAN FORMATION IN WESTERN XIAN COUNTY, HEBEI[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 383-391 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0152
中图分类号: P641   

参考文献

[1] 王贵玲, 马峰, 蔺文静, 等. 干热岩资源开发工程储层激发研究进展[J]. 科技导报, 2015, 33(11): 103-107.
WANG G L, MA F, LIN W J, et al.Reservoir stimulation in hot dry rock resource development[J]. Science & technology review, 2015, 33(11): 103-107.
[2] 王贵玲, 张薇, 蔺文静, 等. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 2017, 44(6): 1074-1085.
WANG G L, ZHANG W, LIN W J, et al.Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region[J]. Geology in China, 2017, 44(6): 1074-1085.
[3] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
WANG G L, LIN W J.Main hydro-geothermal systems and their genetic models in China[J]. Acta geologica sinica, 2020, 94(7): 1923-1937.
[4] 王贵玲, 高俊, 张保建, 等. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 2020, 94(7): 1970-1980.
WANG G L, GAO J, ZHANG B J, et al.Study on the thermal storage characteristics of the Wumishan formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta geologica sinica, 2020, 94(7): 1970-1980.
[5] 申建梅, 张宏达, 陈宗宇, 等. 地热资源管理与可持续发展[J]. 地球学报, 2000(2): 140-141.
SHEN J M, ZHANG H D, CHEN Z Y, et al.Geothermal resource management and sustainable development[J]. Acta geoscientica sinica, 2000(2): 140-141.
[6] 王贵玲, 张发旺, 刘志明. 国内外地热能开发利用现状及前景分析[J]. 地球学报, 2000, 21(2): 134-137.
WANG G L, ZHANG F W, LIU Z M.An analysis of present situation and prospects of geothermal energy development and utilization in the world[J]. Acta geoscientica sinica, 2000, 21(2): 134-137.
[7] 刘金侠, 谷雪曦, 李欣, 等. 我国地热能开发利用现状、问题与展望[J]. 建设科技, 2015, 8(4): 27-30.
LIU J X, GU X X, LI X, et al.Current situation, problems and prospects of geothermal energy development and utilization in China[J]. Journal of construction science and technology, 2015, 8(4): 27-30.
[8] 烟献军, 刘庆宣. 石家庄东部地区地热资源前景分析[J]. 地球学报, 2000, 21(2): 163-166.
YAN X J, LIU Q X.An analyses of prospects of geothermal resource in eastern Shijiazhuang district[J]. Acta geoscientica sinica, 2000, 21(2): 163-166.
[9] JEANNE P, RUTQVIST J, VASCO D, et al.A 3D hydrogeological and geomechanical model of an enhanced geothermal system at the Geysers, California[J]. Geothermics, 2014, 51(4): 240-252.
[10] JEANNE P, RUTQVIST J, HARTLINE C, et al.Reservoir structure and properties from geomechanical modeling and microseismicity analyses associated with an enhanced geothermal system at the Geysers, California[J]. Geothermics, 2014, 51(4): 460-469.
[11] GARCIA J, HARTLINE C, WALTERS M, et al.The northwest Geysers EGS demonstration project, California[J]. Geothermics, 2015, 63: 97-119.
[12] ZHAO Y S, FENG Z H, FENG Z C, et al.THM (thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000-7000 M[J]. Energy, 2015, 82: 193-205.
[13] RUTQVIST J, JEANNE P, DOBSON P F, et al.The northwest Geysers EGS demonstration project, California - part 2: modeling and interpretation[J]. Geothermics, 2016, 63(1): 120-138.
[14] SUN Z X, ZHANG X, XU Y, et al.Numerical simulation of the heat extraction in EGS with thermal hydraulic mechanical coupling method based on discrete fractures model[J]. Energy, 2017, 120: 20-33.
[15] JEOUNG S Y, ARNO Z, OVE S.Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints mode[J]. Geothermics, 2014, 52: 165-184.
[16] PANDEY S N, CHAUDHURI A, KELKAR S.A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir[J]. Geothermics, 2017, 65: 17-31.
[17] 张以明, 才博, 何春明, 等. 超高温超深非均质碳酸盐岩储层地质工程一体化体积改造技术[J]. 石油学报, 2018, 39(1): 92-100.
ZHANG Y M, CAI B, HE C M, et al.Volume fracturing technology based on geo-engineering integration for ultra-high temperature and ultra-deep heterogeneous carbonate reservoir[J]. Acta petrolei sinica, 2018, 39(1): 92-100.
[18] 王子杰. 碳酸盐岩溶蚀扩展特征和规律的试验研究 [D]. 焦作: 河南理工大学, 2019.
WANG Z J.Experimental research on corrosion spreading characteristics and mechanism of carbonate rocks[D]. Jiaozuo: Henan Polytechnic University, 2019.
[19] 周汉国, 郭建春, 李静, 等. 深层碳酸盐岩储层溶洞围岩应力分布研究[J]. 地质力学学报, 2018, 24(1): 35-41.
ZHOU H G, GUO J C, LI J, et al.Distribution of surrounding rock stress in deep carbonate reservoir karst cave[J]. Journal of geomechanics, 2018, 24(1): 35-41.
[20] 周际永, 易飞, 翟立军, 等. 裂缝型碳酸盐岩储层酸压数值模拟[J]. 科学技术与工程, 2019, 19(26): 186-192.
ZHOU J Y, YI F, ZHAI L J, et al.Acid fracturing modeling of baturally fractured carbonates[J]. Science technology and engineering, 2019, 19(26): 186-192.
[21] 王连成, 李明朗, 程万庆, 等. 酸化压裂方法在碳酸盐岩热储层中的应用[J]. 水文地质工程地质, 2010, 37(5): 128-132.
WANG L C, LI M L, CHENG W Q, et al.Application of acidifying & fracturing technology to carbonate rock reservoir[J]. Hydrogeology & engineering geology, 2010, 37(5): 128-132.
[22] 孙晓林, 杨宝美, 高新智, 等. 天津城区奥陶系灰岩热储层酸化压裂增产试验研究[J]. 河北工业大学学报, 2019, 48(6): 87-92.
SUN X L, YANG B M, GAO X Z, et al.Test study of acidification fracturing stimulation in Ordovician limestone thermal reservoirs in the urban area of Tianjin[J]. Journal of Hebei University of Technology, 2019, 48(6): 87-92.
[23] 徐云鹏. 酸化压裂工艺在碳酸盐岩层地热开发中的应用 [D]. 北京: 中国地质大学(北京), 2014.
XU Y P.Acid fracturing technology and its application in geothermal development of carbonate rocks[D]. Beijing: China University of Geosciences (Beijing), 2014.
[24] 申云飞, 卢玮, 陈莹, 等. 水力压裂技术在豫西基岩地热井增产中的应用研究[J]. 探矿工程(岩土钻掘工程), 2016, 43(10): 253-256.
SHEN Y F, LU W, CHEN Y, et al.Application research on hydraulic fracturing technology for bedrock geothermal yield increasing in western Henan[J]. Exploration engineering(rock & soil drilling and tunneling), 2016, 43(10): 253-256.
[25] 罗雄, 焦国盈, 孟伟, 等. 高温高压碳酸盐岩的酸岩反应实验研究[J]. 重庆科技学院学报 (自然科学版), 2019, 21(3): 46-49.
LUO X, JIAO G Y, MENG W, et al.Experimental study on acid-rock reaction of high temperature and high pressure carbonate rock[J]. Journal of Chongqing University of Science and Technology (natural sciences edition), 2019, 21(3): 46-49.
[26] 盛金昌, 吴彦青, 白柯含, 等. 不同溶液渗透溶蚀作用下碳酸盐岩渗透特性研究[J]. 岩石力学与工程学报, 2019, 38(S02): 7-14.
SHENG J C, WU Y Q, BAI K H, et al.Study on the permeability evolution of carbonate rocks under seepage corrosion effect of different solutions[J]. Chinese journal of rock mechanics and engineering, 2019, 38(S02): 7-14.
[27] 韩猛. 酸性流体对碳酸盐岩储层溶蚀及改造作用模拟实验研究[D]. 北京: 中国地质大学(北京), 2018.
HAN M.Study of simulation experiment on carbonate reservoir dissolution and reconstruction by acid fluid[D]. Beijing: China University of Geosciences(Beijing), 2018.
[28] 李根, 唐春安, 李连崇, 等. 水压致裂过程的三维数值模拟研究[J]. 岩土工程学报, 2010, 32(12): 1875-1881.
LI G, TANG C A, LI L C, et al.Numerical simulation of 3D hydraulic fracturing process[J]. Chinese journal of geotechnical engineering, 2010, 32(12): 1875-1881.
[29] 雷宏武. 增强型地热系统(EGS)中热能开发力学耦合水热过程分析[D]. 长春: 吉林大学, 2014.
LEI H W.Coupling mechanics with thermal - hydrodynamic processes for heat development in enhanced geothermal systems[D]. Changchun: Jilin Universuty, 2014.
[30] 门晓溪. 岩体渗流—损伤耦合及其水力压裂机理数值试验研究[D]. 沈阳: 东北大学, 2015.
MEN X X.Numerical experimental study on hydraulic fracturing mechanism and coupling of seepage and damage of rockmass[D]. Shenyang: Northeastern University, 2015.
[31] 周长冰. 高温岩体水压致裂钻孔起裂与裂缝扩展机理及其应用[D]. 徐州: 中国矿业大学, 2017.
ZHOU C B.Mechanism of hydraulic fracture borehole’s fracture initiation and propagation for the high-temperature rock mass and its application[D]. Xuzhou: China University of Mining and Technology, 2017.
[32] 徐浩然, 程镜如, 赵志宏. 华北地区碳酸盐岩热储层酸化压裂模拟方法与应用[J]. 地质学报, 2020, 94(7): 2157-2165.
XU H R, CHENG J R, ZHAO Z H.Numerical study and application of acid-fracturing in the carbonate geothermal reservoirs from North China[J]. Acta geologica sinica, 2020, 94(7): 2157-2165.
[33] 熊良宵, 虞利军. 高温作用下和高温后岩石力学特性的研究进展[J]. 地质灾害与环境保护, 2018, 29(1): 76-82.
XIONG L X, YU L J.Advances of mechanical properties of rock under high temperature and after high temperature[J]. Journal of geological hazards and environment preservation, 2018, 29(1): 76-82.
[34] 延新杰. 储层脆性对水力压裂裂缝复杂性影响的数值模拟研究[D]. 大连: 大连理工大学, 2018.
YAN X J.Numerical simulation study on the influence of reservoir brittleness on complexity of hydraulic fracture [D]. Dalian: Dalian University of Technology, 2018.
[35] 李亭昕, 蔡永丰, 刘彦广, 等. 献县地热田碳酸盐岩热储示踪试验与模拟[J]. 地学前缘, 2020, 27(1): 152-158.
LI T X, CAI Y F, LIU Y G, et al.Tracer test and simulation of thermal energy storage in carbonate rocks of the Xian County geothermal field[J]. Earth science frontiers, 2020, 27(1): 152-158.

基金

国家重点研发计划(2018YFC0604306); 中国地质调查局项目(DD20189114); 中国地质科学院基本科研业务项目(JYYWF201811)

PDF(3219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/