为减少塔式太阳能吸热器在高温下快速增加的辐射热损,基于聚光太阳辐射的空间分布不均匀特性,提出并优化一种在吸热器表面不同入射能流区域采用不同光谱选择性吸收涂层的多区域涂层设计方法,并与均一选择性吸收涂层和传统灰体涂层吸热器进行热损性能、全天适应性和全年性能的对比分析。结果表明:在中国帕里地区,吸热器进口温度为290 ℃、出口温度为800 ℃的条件下,多区域涂层对比传统灰体涂层和均一选择性吸收涂层吸热器在典型日12月21日中的辐射热损分别降低89.8%和75.7%,总热损分别降低63.9%和38.5%;全年光热转换效率可分别提升8.1%和2.4%。
Abstract
A multi-area coating optimization method of selective absorbing coating is proposed to reduce the radiation heat loss which increases exponentially at high temperatures. Based on the spatial inhomogeneous characteristics of solar heat flux around the receiver, the optimal cutoff wavelength optimization of selective coatings to different areas on the external surfaces of the receiver is conducted. Heat loss performance analysis, all-day adaptability analysis and annual performance analysis are performed in comparison with traditional gray body coatings and uniform selective absorbing coatings. The results show that on December 21, a typical day in Pagri, when the HTF inlet temperature is 290 ℃ and outlet temperature is 800 ℃, compared with the traditional gray body coating receiver and the uniform selective coating receiver, the radiation heat loss of the multi-area coating receiver can be reduced by 89.8% and 75.7%, respectively, and the total heat loss can be reduced by 63.9% and 38.5%, respectively. And the annual photothermal conversion efficiency of the multi-area coating receiver can be improved by 8.1% and 2.4%, respectively.
关键词
太阳能吸热器 /
热损 /
吸热器效率 /
塔式太阳能热发电 /
选择性吸收涂层
Key words
solar absorbers /
heat losses /
collector efficiency /
solar tower power /
selective absorbing coating
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] OKOROIGWE E, MADHLOPA A.An integrated combined cycle system driven by a solar tower: a review[J]. Renewable and sustainable energy reviews, 2016, 57: 337-350.
[2] 邓成刚, 李伟科, 梁展鹏, 等. 太阳光热发电-超临界二氧化碳循环系统经济性分析与优化[J]. 热力发电, 2021, 50(5): 59-66.
DENG C G, LI W K, LIANG Z P, et al.Economic analysis and optimization for concentrated solar power-supercritical carbon dioxide Brayton cycle system[J]. Thermal power generation, 2021, 50(5): 59-66.
[3] 吴毅, 王佳莹, 王明坤, 等. 基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J]. 西安交通大学学报, 2016, 50(5): 108-113.
WU Y, WANG J Y, WANG M K, et al.A towered solar thermal power plant based on supercritical CO2 Brayton cycle[J]. Journal of Xi’an Jiaotong University, 2016, 50(5): 108-113.
[4] BERGMAN T L, INCROPERA F P, DEWITT D P, et al.Fundamentals of heat and mass transfer[M]. John Wiley & Sons, Inc., 2011.
[5] 陈建生, 梁颖宗, 罗向龙, 等. 塔式太阳能-超临界CO2发电系统集成与优化[J]. 南方能源建设, 2020, 7(1): 1-7.
CHEN J S, LIANG Y Z, LUO X L, et al.Equation-based modeling for solar power tower-supercritical CO2 integrated system anaylsis and optimization[J]. Southern energy construction, 2020, 7(1): 1-7.
[6] WANG W Q, QIU Y, LI M J, et al.Optical efficiency improvement of solar power tower by employing and optimizing novel fin-like receivers[J]. Energy conversion and management, 2019, 184: 219-234.
[7] LARROUTUROU F, CALIOT C, FLAMANT G.Influence of receiver surface spectral selectivity on the solar-to-electric efficiency of a solar tower power plant[J]. Solar energy, 2016, 130: 60-73.
[8] XU L, STEIN W, KIM J S, et al.Transient numerical model for the thermal performance of the solar receiver[J]. Applied thermal engineering, 2018, 141: 1035-1047.
[9] 王其梁, 裴刚, 杨洪伦, 等. 辐射遮热板对高温真空集热管热损的影响研究[J]. 太阳能学报, 2018, 39(4): 972-979.
WANG Q L,PEI G,YANG H L, et al.Study of effect of radiation heat-shielding plate on heat loss of high temperature evacuated tube collector[J]. Acta energiae solaris sinica, 2018, 39(4): 972-979.
[10] QIU X L, GAO X H, ZHOU T H, et al.Structure, thermal stability and chromaticity investigation of TiB2 based high temperature solar selective absorbing coatings[J]. Solar energy, 2019, 181: 88-94.
[11] SIEBERS D L, KRAABEL J S.Estimating convective energy losses from solar central receivers[R]. Sandia National Labs., Livermore, CA(USA), 1984.
[12] The National Solar Radiation Database: Weather Data[DB/OL]. https://nsrdb.nrel.gov/.
[13] CSP Plant Cerro Dominador[EB/OL]. https://cerrodominador.com/en/projects/.
基金
国家重点研发计划(2020YFA0710100); 国家自然科学基金面上项目(51776193)