基于浅层地热能流体加热技术的机场道面融雪方案

曾姝, 闫振国, 张正威, 杨军

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 376-382.

PDF(2166 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2166 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 376-382. DOI: 10.19912/j.0254-0096.tynxb.2021-0165

基于浅层地热能流体加热技术的机场道面融雪方案

  • 曾姝1, 闫振国1,2, 张正威3, 杨军1
作者信息 +

RESEARCH OF NOVELTY AIRPORT RUNWAYS SNOW-MELTING SYSTEM BASED ON SHALLOW GEOTHERMAL HYDRONIC HEATING TECHNOLOGY

  • Zeng Shu1, Yan Zhenguo1,2, Zhang Zhengwei3, Yang Jun1
Author information +
文章历史 +

摘要

在利用浅层地热能流体加热技术为机场道面融雪化冰时,因传统埋管方案埋深较浅难以和机场道面施工结合,且在换热时会在道面结构内引起较大的温度应力,因此该文提出一种将管道铺设于面层和基层的交界处的新型埋管方案,以提高施工便利性、减小面层混凝土中的温度应力。建立COMSOL Multiphysics三维有限元数值模型,重点比较其在传热规律和融雪性能上与传统方案的差异,并分析入口温度和流速对融雪效果的影响。结果表明,新方案可有效利用浅层地热能提高路表温度,有效传热率为85.9%,融雪效果较好;新方案温度梯度仅为传统方案的40%,温度分布更均匀,可降低温度应力而减小路表开裂的风险;提高入口温度可有效提升融雪效果,而流速对传热性能和融雪效果的影响较小。

Abstract

When the shallow geothermal hydronic heating technology is applied for snow-melting and deicing, it is difficult to install the pipes inside the airport runways pavement, and the heat transfer can cause high temperature stress. A novelty scheme to embed the pipes at the junction of the surface layer and the base layer is proposed to improve the construction convenience and reduce the temperature stress in surface concrete. A 3D numerical model in COMSOL Multiphysics software is established to compare the heat transfer process and snow-melting performance between the traditional and proposed pavements. Then the influences of the inlet temperature and flow rate on snow-melting efficiencies are analyzed. The results show that the proposed pavement can effectively utilize the shallow geothermal energy to improve the surface temperature, and the effective heat transfer rate is 85.9%. The temperature distribution is more uniform with a low temperature gradient which is only 40% of that of the traditional scheme, reducing the temperature stress and risk of cracking. The snow-melting performance can be improved by increasing the inlet temperature, but it is less affected by the flowrate.

关键词

传热性能 / 地热能 / 机场跑道 / 融雪化冰 / 流体加热技术

Key words

heat transfer performance / geothermal energy / airport runways / snow and ice removal / hydronic heating

引用本文

导出引用
曾姝, 闫振国, 张正威, 杨军. 基于浅层地热能流体加热技术的机场道面融雪方案[J]. 太阳能学报. 2022, 43(11): 376-382 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0165
Zeng Shu, Yan Zhenguo, Zhang Zhengwei, Yang Jun. RESEARCH OF NOVELTY AIRPORT RUNWAYS SNOW-MELTING SYSTEM BASED ON SHALLOW GEOTHERMAL HYDRONIC HEATING TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 376-382 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0165
中图分类号: U416   

参考文献

[1] KLEIN-PASTE A, BUGGE H J, HUSEBY A B.A decision support model to assess the braking performance on snow and ice contaminated runways[J]. Cold regions science & technology, 2015, 117: 43-51.
[2] WANG H, THAKKAR C, CHEN X D, et al.Life-cycle assessment of airport pavement design alternatives for energy and environmental impacts[J]. Journal of cleaner production, 2016, 133: 163-171.
[3] HU R J, MA H, WEI W S.Snow hazard regionalization in China[J]. Chinese geographical science, 1992, 3: 3-10.
[4] 喻文兵, 李双洋, 冯文杰, 等. 道路融雪除冰技术现状与发展趋势分析[J]. 冰川冻土, 2011, 33(4): 933-940.
YU W B, Li S Y, FENG W J, et al.Snow and ice melting techniques of pavement: state of the art and development tendency[J]. Journal of glaciology and geocryology, 2011, 33(4): 933-940.
[5] 党政, 关文, 程晓辉, 等. CFG能源桩用于混凝土路面除冰降温的试验研究[J]. 中国公路学报, 2019, 32(2): 19-30.
DANG Z, GUAN W, CHENG X H, et al.Experimental study on CFG energy pile for concrete pavement deicing and cooling[J]. China journal of highway and transport, 2019, 32(2): 19-30.
[6] HAN C J, YU X.An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions: computational assisted feasibility analyses[J]. Renewable energy, 2018,123: 417-427.
[7] HO I H, DICKSON M.Numerical modeling of heat production using geothermal energy for a snow-melting system[J]. Geomechanics for energy and the environment, 2017, 10: 42-51.
[8] 谭忆秋, 张驰, 徐慧宁, 等. 主动除冰雪路面融雪化冰特性及路用性能研究综述[J]. 中国公路学报, 2019, 32(4): 1-17.
TAN Y Q, ZHANG C, XU H N, et al.Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement[J]. China journal of highway and transport, 2019, 32(4): 1-17.
[9] 王华军, 赵军. 地热能道路融雪化冰过程实验研究[J]. 太阳能学报, 2009, 30(2): 177-181.
WANG H J, ZHAO J.Experimental study on geothermal ice and snow melting process for roads[J]. Acta energiae solaris sinica, 2009, 30(2): 177-181.
[10] ZWARYCZ K.Snow melting and heating systems based on geothermal heat pumps at Goleniow airport, Poland[R]. The United Nations University Geothermal Training Programme Reports, 2002, 21: 431-464.
[11] TAN Y Q, ZHANG C, LYU H J, et al.Experimental and numerical analysis of the critical heating strategy for hydronic heated snow melting airfield runway[J]. Applied thermal engineering, 2020, 178: 115508.
[12] CHEN X, KONG G Q, LIU H L, et al.Experimental on thermal performance of bridge deck with hydronic heating system[J]. Cold regions science and technology, 2020, 178: 103130.
[13] 王家赫, 黄法礼, 李化建, 等. 铁路隧道衬砌混凝土温度裂缝原因分析与防治措施[J]. 铁道建筑, 2020, 60(9): 73-77.
WANG J H, HUANG F L, LI H J, et al.Cause analysis and prevention measures of temperature cracks in railway tunnel lining concrete[J]. Railway engineering, 2020, 60(9): 73-77.
[14] ASHRAE.2019 ASHRAE handbook: heating, ventilating and air-conditioning applications[M]. Atlanta: ASHRAE, Inc, 2019: 52.1-52.22.
[15] DOUGHTY C, NIR A, TSANG C F.Seasonal thermal energy storage in unsaturated soils: model development and field validation[R]. United States: Earth Sciences Division of Lawrence Berkeley Laboratory University of California, 1991.

基金

国家自然科学基金(51778585)

PDF(2166 KB)

Accesses

Citation

Detail

段落导航
相关文章

/