枫木木质素热解自由基演变规律研究

范宇阳, 雷鸣, 孔祥琛, 刘超, 肖睿

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 352-357.

PDF(2121 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2121 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 352-357. DOI: 10.19912/j.0254-0096.tynxb.2021-0166

枫木木质素热解自由基演变规律研究

  • 范宇阳, 雷鸣, 孔祥琛, 刘超, 肖睿
作者信息 +

STUDY ON RADICAL EVOLUTION DURING MAPLE LIGNIN PYROLYSIS

  • Fan Yuyang, Lei Ming, Kong Xiangchen, Liu Chao, Xiao Rui
Author information +
文章历史 +

摘要

采用电子顺磁共振波谱仪(EPR)研究枫木木质素热解自由基的演变规律。实验结果表明:枫木木质素热解自由基演变过程分为3个阶段:温度低于450 ℃时,以自由基引发反应为主,同时液体产率在450 ℃达到最大;温度处于450~550 ℃之间时为自由基增长阶段,其自旋浓度在550 ℃时急剧升至276.99×1017 spin/g;温度高于600 ℃时,自由基增速放缓。此外,通过构建回归方程描述温度、氢碳比(H/C)、石墨化程度与自由基含量的耦合变化趋势,可为揭示木质素微观热解机理提供新思路。

Abstract

Radical evolution during maple lignin pyrolysis is monitored by the electron paramagnetic resonance spectroscopy (EPR). Results showed that maple lignin pyrolysis radicals can be divided into three stages: the radical initiation stage below 450 ℃ in which the yield of liquid reaches the highest; the radical propagation stage between 450 ℃ and 550 ℃ in which the radical concentration increases sharply to 276.99×1017 spin/g at 550 ℃; the radical stabilization stage above 600 ℃. Furthermore, coupling change trend between temperature, hydrogen/carbon ratio, graphitization degree and radical concentration are separately well described by constructing regression equations, which provided a new idea to reveal the microscopic pyrolysis mechanism of lignin.

关键词

木质素 / 热解 / 产物分布 / 自由基 / 电子顺磁共振

Key words

lignin / pyrolysis / product distribution / radical / EPR

引用本文

导出引用
范宇阳, 雷鸣, 孔祥琛, 刘超, 肖睿. 枫木木质素热解自由基演变规律研究[J]. 太阳能学报. 2022, 43(11): 352-357 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0166
Fan Yuyang, Lei Ming, Kong Xiangchen, Liu Chao, Xiao Rui. STUDY ON RADICAL EVOLUTION DURING MAPLE LIGNIN PYROLYSIS[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 352-357 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0166
中图分类号: TK513.5   

参考文献

[1] REGALBUTO J R.Cellulosic biofuels—got gasoline?[J]. Science, 2009, 325(5942): 822-824.
[2] 张斌, 阴秀丽, 吴创之, 等. 木粉水解残渣热解特性实验研究[J]. 太阳能学报, 2010, 31(10): 1225-1229.
ZHANG B, YIN X L, WU C Z, et al.Research on pyrolysis characteristics of hydrolysis residues of wood powder[J]. Acta energiae solaris sinica, 2010, 31(10): 1225-1229.
[3] FAN L, ZHANG Y, LIU S, et al.Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters[J]. Bioresource technology, 2017, 241: 1118-1126.
[4] GOOTY A T, LI D B, BERRUTI F, et al.Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors[J]. Journal of analytical and applied pyrolysis,2014, 106: 33-40.
[5] LI C, HAYASHI J I, SUN Y F, et al.Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis[J]. Journal of analytical and applied pyrolysis, 2021, 155: 105031.
[6] 蒋晓燕, 陆强, 楚化强, 等. 磷酸催化热解木质素模化物的反应机理研究[J]. 太阳能学报, 2020, 41(2): 6-12.
JIANG X Y, LU Q, CHU H Q, et al.Mechanism study on pyrolysis of lignin model compound catalyzed by phosphoric acid[J]. Acta energiae solaris sinica, 2020, 41(2): 6-12.
[7] 董志国, 刘紫灏, 李建, 等. 超滤黑液木质素催化热解特性研究[J]. 太阳能学报, 2020, 41(2): 58-65.
DONG Z G, LIU Z H, LI J, et al.Study on catalytic pyrolysis characteristics of lignin ultrafiltrated from black liquor[J]. Acta energiae solaris sinica, 2020, 41(2): 58-65.
[8] KAWAMOTO H.Lignin pyrolysis reactions[J]. Journal of wood science, 2017, 63(2): 117-132.
[9] LU Q, XIE W L, HU B, et al.A novel interaction mechanism in lignin pyrolysis: phenolics-assisted hydrogen transfer for the decomposition of the β—O—4 linkage[J]. Combustion and flame, 2021, 225: 395-405.
[10] ZHOU Q G, LUO Z Y, LI G X, et al.EPR detection of key radicals during coking process of lignin monomer pyrolysis[J]. Journal of analytical and applied pyrolysis, 2020, 152: 104948.
[11] LEI M, WU S B, LIANG J J, et al.Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis[J]. Journal of analytical and applied pyrolysis, 2019, 138: 249-260.
[12] YANG X, SONG Y L, MA S, et al.Using γ-valerolactone and toluenesulfonic acid to extract lignin efficiently with a combined hydrolysis factor and structure characteristics analysis of lignin[J]. Cellulose, 2020, 27(7): 3581-3590.
[13] TIMOKHIN V, REGNER M, MOTAGAMWALA A, et al.Production of p-coumaric acid from corn GVL-Lignin[J]. ACS sustainable chemistry & engineering, 2020, 8(47): 17427-17438.
[14] JAMPA S, PUENTE-URBINA A, MA Z Q, et al.Optimization of lignin extraction from pine wood for fast pyrolysis by using a γ-valerolactone-based binary solvent system[J]. ACS sustainable chemistry & engineering, 2019, 7(4): 4058-4068.
[15] SETTE M, LANGE H, CRESTINI C.Quantitative HSQC analyses of lignin: a practical comparison[J]. Computational and structural biotechnology journal, 2013, 6(7): e201303016.
[16] KOTAKE T, KAWAMOTO H, SAKA S.Pyrolysis reactions of coniferyl alcohol as a model of the primary structure formed during lignin pyrolysis[J]. Journal of analytical and applied pyrolysis, 2013, 104: 573-584.
[17] LEDESMA E B, MARSH N D, SANDROWITZ A K, et al.An experimental study on the thermal decomposition of catechol[J]. Proceedings of the combustion institute, 2002, 29(2): 2299-2306.
[18] PATIL S V, ARGYROPOULOS D S.Stable organic radicals in lignin: a review[J]. ChemSusChem, 2017, 10(17): 3284-3303.
[19] LIU W J, LI W W, JIANG H, et al.Fates of chemical elements in biomass during its pyrolysis[J]. Chemical reviews, 2017, 117(9): 6367-6398.
[20] SATO K, NOGUCHI M, DEMACHI A, et al.A mechanism of lithium storage in disordered carbons[J]. Science, 1994, 264(5158): 556-558.
[21] LEI M, WU S B, LIU C, et al.Revealing the pyrolysis behavior of 5-5′ biphenyl-type lignin fragment. Part I: a mechanistic study on fragmentation via experiments and theoretical calculation[J]. Fuel processing technology, 2021, 217: 106812.
[22] ZHANG Y, XU X Y, ZHANG P Y, et al.Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar[J]. Chemosphere: environmental toxicology and risk assessment, 2019, 232: 273-280.
[23] FAN Y Y, LIU C, KONG X C, et al.A new perspective on polyethylene-promoted lignin pyrolysis with mass transfer and radical explanation[J]. Green energy & environment, 2022, 7(6): 1318-1326.
[24] KIM K H, DUTTA T, WALTER E D, et al.Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization[J]. ACS sustainable chemistry & engineering, 2017, 5: 3913-3919.

基金

国家重点研发计划(2018YFB1501400); 中央高校基本科研业务费专项资金(2242020R20009)

PDF(2121 KB)

Accesses

Citation

Detail

段落导航
相关文章

/