STUDY ON RADICAL EVOLUTION DURING MAPLE LIGNIN PYROLYSIS
Fan Yuyang, Lei Ming, Kong Xiangchen, Liu Chao, Xiao Rui
Author information+
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
Radical evolution during maple lignin pyrolysis is monitored by the electron paramagnetic resonance spectroscopy (EPR). Results showed that maple lignin pyrolysis radicals can be divided into three stages: the radical initiation stage below 450 ℃ in which the yield of liquid reaches the highest; the radical propagation stage between 450 ℃ and 550 ℃ in which the radical concentration increases sharply to 276.99×1017 spin/g at 550 ℃; the radical stabilization stage above 600 ℃. Furthermore, coupling change trend between temperature, hydrogen/carbon ratio, graphitization degree and radical concentration are separately well described by constructing regression equations, which provided a new idea to reveal the microscopic pyrolysis mechanism of lignin.
Fan Yuyang, Lei Ming, Kong Xiangchen, Liu Chao, Xiao Rui.
STUDY ON RADICAL EVOLUTION DURING MAPLE LIGNIN PYROLYSIS[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 352-357 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0166
中图分类号:
TK513.5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] REGALBUTO J R.Cellulosic biofuels—got gasoline?[J]. Science, 2009, 325(5942): 822-824. [2] 张斌, 阴秀丽, 吴创之, 等. 木粉水解残渣热解特性实验研究[J]. 太阳能学报, 2010, 31(10): 1225-1229. ZHANG B, YIN X L, WU C Z, et al.Research on pyrolysis characteristics of hydrolysis residues of wood powder[J]. Acta energiae solaris sinica, 2010, 31(10): 1225-1229. [3] FAN L, ZHANG Y, LIU S, et al.Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters[J]. Bioresource technology, 2017, 241: 1118-1126. [4] GOOTY A T, LI D B, BERRUTI F, et al.Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors[J]. Journal of analytical and applied pyrolysis,2014, 106: 33-40. [5] LI C, HAYASHI J I, SUN Y F, et al.Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis[J]. Journal of analytical and applied pyrolysis, 2021, 155: 105031. [6] 蒋晓燕, 陆强, 楚化强, 等. 磷酸催化热解木质素模化物的反应机理研究[J]. 太阳能学报, 2020, 41(2): 6-12. JIANG X Y, LU Q, CHU H Q, et al.Mechanism study on pyrolysis of lignin model compound catalyzed by phosphoric acid[J]. Acta energiae solaris sinica, 2020, 41(2): 6-12. [7] 董志国, 刘紫灏, 李建, 等. 超滤黑液木质素催化热解特性研究[J]. 太阳能学报, 2020, 41(2): 58-65. DONG Z G, LIU Z H, LI J, et al.Study on catalytic pyrolysis characteristics of lignin ultrafiltrated from black liquor[J]. Acta energiae solaris sinica, 2020, 41(2): 58-65. [8] KAWAMOTO H.Lignin pyrolysis reactions[J]. Journal of wood science, 2017, 63(2): 117-132. [9] LU Q, XIE W L, HU B, et al.A novel interaction mechanism in lignin pyrolysis: phenolics-assisted hydrogen transfer for the decomposition of the β—O—4 linkage[J]. Combustion and flame, 2021, 225: 395-405. [10] ZHOU Q G, LUO Z Y, LI G X, et al.EPR detection of key radicals during coking process of lignin monomer pyrolysis[J]. Journal of analytical and applied pyrolysis, 2020, 152: 104948. [11] LEI M, WU S B, LIANG J J, et al.Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis[J]. Journal of analytical and applied pyrolysis, 2019, 138: 249-260. [12] YANG X, SONG Y L, MA S, et al.Using γ-valerolactone and toluenesulfonic acid to extract lignin efficiently with a combined hydrolysis factor and structure characteristics analysis of lignin[J]. Cellulose, 2020, 27(7): 3581-3590. [13] TIMOKHIN V, REGNER M, MOTAGAMWALA A, et al.Production of p-coumaric acid from corn GVL-Lignin[J]. ACS sustainable chemistry & engineering, 2020, 8(47): 17427-17438. [14] JAMPA S, PUENTE-URBINA A, MA Z Q, et al.Optimization of lignin extraction from pine wood for fast pyrolysis by using a γ-valerolactone-based binary solvent system[J]. ACS sustainable chemistry & engineering, 2019, 7(4): 4058-4068. [15] SETTE M, LANGE H, CRESTINI C.Quantitative HSQC analyses of lignin: a practical comparison[J]. Computational and structural biotechnology journal, 2013, 6(7): e201303016. [16] KOTAKE T, KAWAMOTO H, SAKA S.Pyrolysis reactions of coniferyl alcohol as a model of the primary structure formed during lignin pyrolysis[J]. Journal of analytical and applied pyrolysis, 2013, 104: 573-584. [17] LEDESMA E B, MARSH N D, SANDROWITZ A K, et al.An experimental study on the thermal decomposition of catechol[J]. Proceedings of the combustion institute, 2002, 29(2): 2299-2306. [18] PATIL S V, ARGYROPOULOS D S.Stable organic radicals in lignin: a review[J]. ChemSusChem, 2017, 10(17): 3284-3303. [19] LIU W J, LI W W, JIANG H, et al.Fates of chemical elements in biomass during its pyrolysis[J]. Chemical reviews, 2017, 117(9): 6367-6398. [20] SATO K, NOGUCHI M, DEMACHI A, et al.A mechanism of lithium storage in disordered carbons[J]. Science, 1994, 264(5158): 556-558. [21] LEI M, WU S B, LIU C, et al.Revealing the pyrolysis behavior of 5-5′ biphenyl-type lignin fragment. Part I: a mechanistic study on fragmentation via experiments and theoretical calculation[J]. Fuel processing technology, 2021, 217: 106812. [22] ZHANG Y, XU X Y, ZHANG P Y, et al.Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar[J]. Chemosphere: environmental toxicology and risk assessment, 2019, 232: 273-280. [23] FAN Y Y, LIU C, KONG X C, et al.A new perspective on polyethylene-promoted lignin pyrolysis with mass transfer and radical explanation[J]. Green energy & environment, 2022, 7(6): 1318-1326. [24] KIM K H, DUTTA T, WALTER E D, et al.Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization[J]. ACS sustainable chemistry & engineering, 2017, 5: 3913-3919.