光致衰减(LID)与热辅助光诱导衰减(LeTID)是晶硅太阳电池的2种主要衰减,其典型光注入条件分别为25 ℃、1 sun(LID环境)和75 ℃、1 sun(LeTID环境)。从有效少子寿命的角度研究p型铸造单晶硅的衰减机制。200 ℃、7 suns光注入处理过程中样品少子寿命先下降后恢复,这一过程称为光注入再生处理。在LID环境下,无光注入再生处理的样品具有快速与慢速2个衰减阶段,光注入再生处理的样品只有快速衰减阶段。计算两组样品带隙中央附近的缺陷电子/空穴俘获截面比k约为7,表明其中缺陷与直拉单晶硅(Cz-Si)中的BO缺陷相同。对光注入再生处理的样品,在LeTID环境下的衰减阶段计算出k约为35,此数值与多晶硅(mc-Si)中LeTID缺陷的一致。
Abstract
Light induced degradation (LID) and light and elevated temperature induced degradation (LeTID) are two main degradations of crystalline silicon solar cells, with typical light soaking conditions of 25 ℃ and 1 sun (LID environment) and 75 ℃ and 1 sun (LeTID environment), respectively. In this paper, the degradation mechanism of p-type cast mono silicon wafer was studied by the effective minority carrier lifetime. At 200 ℃ and 7 suns, the minority carrier lifetime of the sample decreased first and then recovered. This process was called the light soaking regeneration. In LID environment, the samples without light soaking regeneration had two degradation stages: fast and slow, but the samples with light soaking regeneration only had the fast degradation stage. The electron/hole capture cross-section ratio of the LID defect near the center of the bandgap was calculated to be about 7, indicating that the defect was the same as the BO defect in Czochralski silicon (Cz-Si). For the samples with light soaking regeneration, the k is calculated to be about 35 at the maximum LeTID stage, indicating that LeTID defect in cast mono silicon is similar with that in multicrystalline silicon (mc-Si).
关键词
光伏 /
铸造单晶硅 /
光致衰减 /
热辅助光诱导衰减 /
载流子寿命 /
缺陷
Key words
photovoltaic /
cast mono silicon /
LID /
LeTID /
carrier lifetime /
defects
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FISCHER H, PSCHUNDER W.Investigation of photon and thermal induced changes in silicon solar cells[C]//Proceedings of 10th IEEE Photovoltaic Specialists Conference, Palo Alto, USA, 1973.
[2] 任丽, 李宁, 杨淑云, 等. 掺Ga高效单晶硅太阳电池抑制光衰研究[J]. 太阳能学报, 2013, 34(3): 449-452.
REN L, LI N, YANG S Y, et al.Study on suppressing light degradation in Ga-doped high-efficiency single crystal silicon solar cell[J]. Acta energiae solaris sinica, 2013, 34(3): 449-452.
[3] RAMSPECK K, ZIMMERMANN S, NAGEL H, et al.Light induced degradation of rear passivated mc-Si solar cells[C]//27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 2012.
[4] NIEWELT T, KWAPIL W, SELINGER M, et al.Long-term stability of aluminum oxide based surface passivation schemes under illumination at elevated temperatures[J]. IEEE journal of photovoltaics, 2017, 7(5): 1197-1202.
[5] KERSTEN F, ENGELHART P, PLOIGT H-C, et al.Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature[J]. Solar energy materials and solar cells, 2015, 142: 83-86.
[6] SIO H C, WANG H T, WANG Q Z, et al.Light and elevated temperature induced degradation in p-type and n-type cast-grown multicrystalline and mono-like silicon[J]. Solar energy materials and solar cells, 2018, 182: 98-104.
[7] ZHOU C, JI F, CHENG S, et al.Light and elevated temperature induced degradation in B-Ga co-doped cast mono Si PERC solar cells[J]. Solar energy materials and solar cells, 2020, 211: 110508.
[8] REIN S.Lifetime spectroscopy: a method of defect characterization in silicon for photovoltaic applications[M]. Berlin: Springer Science & Business Media, 2006: 20-150.
[9] REIN S, GLUNZ S W.Electronic properties of the metastable defect in boron-doped Czochralski silicon: unambiguous determination by advanced lifetime spectroscopy[J]. Applied physics letters, 2003, 82(7): 1054-1056.
[10] MORISHIGE A E, JENSEN M A, NEEDLEMAN D B, et al.Lifetime spectroscopy investigation of light-induced degradation in p-type multicrystalline silicon PERC[J]. IEEE journal of photovoltaics, 2016, 6(6): 1466-1472.
[11] GREEN M A.Intrinsic concentration, effective densities of states, and effective mass in silicon[J]. Journal of applied physics, 1990, 67(6): 2944-2954.
[12] MURPHY J D, BOTHE K, KRAIN R, et al.Parameterisation of injection-dependent lifetime measurements in semiconductors in terms of Shockley-Read-Hall statistics: an application to oxide precipitates in silicon[J]. Journal of applied physics, 2012, 111(11): 113709.
[13] FUNG T H, KIM M, CHEN D, et al.Influence of bound hydrogen states on carrier-induced degradation in multi-crystalline silicon[J]. AIP conference proceedings, 2018, 1999(1): 130004.
[14] NIEWELT T, SCHON J, WARTA W, et al.Degradation of crystalline silicon due to boron-oxygen defects[J]. IEEE journal of photovoltaics, 2017, 7(1): 383-398.
[15] RAMSPECK K, ZIMMERMANN S, NAGEL H, et al.Light induced degradation of rear passivated mc-Si solar cells[C]// Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 2012: 861-865.
[16] CHEN D, KIM M Y, STEFANI B V, et al.Evidence of an identical firing-activated carrier-induced defect in monocrystalline and multicrystalline silicon[J]. Solar energy materials and solar cells, 2017, 172: 293-300.
基金
国家自然科学基金面上项目(61874120)