高压旋喷灌浆法改造近井储层对海洋天然气水合物降压开采潜力影响研究

龚晔, 许天福, 袁益龙, 辛欣, 朱慧星

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 1-8.

PDF(3025 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3025 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 1-8. DOI: 10.19912/j.0254-0096.tynxb.2021-0185

高压旋喷灌浆法改造近井储层对海洋天然气水合物降压开采潜力影响研究

  • 龚晔1,2, 许天福1,2, 袁益龙1,2, 辛欣1,2, 朱慧星1,2
作者信息 +

STUDY OF GAS PRODUCTION FROM MARINE HYDRATE-BEARING SEDIMENTS THROUGH NEAR-WELL RESERVOIR RECONSTRUCTION BY HIGH-PRESSURE JET GROUTING COMBINED WITH DEPRESSURIZATION

  • Gong Ye1,2, Xu Tianfu1,2, Yuan Yilong1,2, Xin Xin1,2, Zhu Huixing1,2
Author information +
文章历史 +

摘要

该文采用高压旋喷灌浆技术对近井储层进行改造,通过在井壁周围形成高渗透泡沫砂浆旋喷桩,结合降压来提升水合物开采效率。以印度K-G盆地NGHP-02-16站位砂质水合物储层为研究对象,构建近井储层改造强化水合物降压开采模型,利用TOUGH+Hydrate对所提方法的增产效果进行数值分析和定量评价。结果表明:近井储层改造能有效提升水合物降压开采效率;水合物开采效率随旋喷桩改造半径和渗透率的增加而增加,但不受旋喷桩孔隙度的影响;降压幅度增大可进一步提升近井储层改造结合降压开采的增产效果。

Abstract

This study proposes reconstructing reservoir near the production well by high-pressure jet grouting(HPJG), which forms a high-permeability foam slurry jet grouting column (JGC) around the wellbore, and combining with depressurization to improve production efficiency. Based on the gas hydrate reservoir at site NGHP-02-16 in the Krishna-Godavari Basin, India, a reservoir reconstruction model for gas production through depressurization is developed to investigate the feasibility of the coupled production method using TOUGH+ Hydrate code. The results show that: Near-well reservoir reconstruction method can effectively improve the hydrate production performance. Hydrate production efficiency increases with the increase of JGC radius and permeability, but not affected by the JGC porosity. Lowering the production pressure can further improve the favorable effect of near-well reservoir reconstruction combined with depressurization method.

关键词

天然气水合物 / 数值模拟 / 海上气井生产 / 降压开采 / 储层改造 / 高压旋喷灌浆

Key words

gas hydrate / numerical simulation / offshore gas well production / depressurization / reservoir reconstruction / high-pressure jet grouting

引用本文

导出引用
龚晔, 许天福, 袁益龙, 辛欣, 朱慧星. 高压旋喷灌浆法改造近井储层对海洋天然气水合物降压开采潜力影响研究[J]. 太阳能学报. 2022, 43(11): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0185
Gong Ye, Xu Tianfu, Yuan Yilong, Xin Xin, Zhu Huixing. STUDY OF GAS PRODUCTION FROM MARINE HYDRATE-BEARING SEDIMENTS THROUGH NEAR-WELL RESERVOIR RECONSTRUCTION BY HIGH-PRESSURE JET GROUTING COMBINED WITH DEPRESSURIZATION[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0185
中图分类号: TE37   

参考文献

[1] 周怀阳. 天然气水合物[M]. 北京: 海洋出版社, 2000.
ZHOU H Y.GAS HYDRATES[M]. Beijing: China Ocean Press, 2000.
[2] 梁海峰. 天然气水合物降压开采理论与技术[M]. 北京: 化学工业出版社, 2014.
LIANG H F.Natural gas hydrate depressurization production theory and technology[M]. Beijing: Chemical Industry Press, 2014.
[3] 袁益龙. 海洋天然气水合物降压开采潜力及力学稳定性数值模拟研究[D]. 长春: 吉林大学, 2019.
YUAN Y L.Numerical simulation on gas production potential and the geo-mechanical stability from marine natural gas hydrate through depressurization[D]. Changchun: Jilin University, 2019.
[4] 苏正, 何勇, 吴能友. 南海北部神狐海域天然气水合物热激发开采潜力的数值模拟分析[J]. 热带海洋学报, 2012, 31(5): 74-82.
SU Z, HE Y, WU N Y.Numerical simulation on production potential of hydrate deposits by thermal stimulation[J]. Journal of tropical oceanography, 2012, 31(5): 74-82.
[5] 姜焕琴. 依靠科技创新试采取得新的重大突破——写在我国海域天然气水合物第二次试采成功之际[N]. 中国矿业报, 2020-03-30.
JIANG H Q. Achieving a new breakthrough in the natural gas hydrate production by scientific and technological innovation—on the success of the second trial production of natural gas hydrate in the sea area of China[N]. China Mining News, 2020-03-30.
[6] SLOAN E D.Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359.
[7] 李刚, 李小森. 单井热吞吐开采南海神狐海域天然气水合物数值模拟[J]. 化工学报, 2011, 62(2): 458-468.
LI G, LI X S.Numerical simulation for gas production from hydrate accumulated in Shenhu Area, South China Sea, using huff and puff method[J]. CIESC journal, 2011, 62(2): 458-468.
[8] 李刚, 李小森, 陈琦, 等. 南海神狐海域天然气水合物开采数值模拟[J]. 化学学报, 2010, 68(11): 1083-1092.
Li G, Li X S, Chen Q, et al.Numerical simulation of gas production from gas hydrate zone in Shenhu Area, South China Sea[J]. Acta chimica sinica, 2010, 68(11): 1083-1092.
[9] YU T, GUAN G Q, ABUDULA A, et al.Application of horizontal wells to the oceanic methane hydrate production in the Nankai Trough, Japan[J]. Journal of natural gas science and engineering, 2019, 62: 113-131.
[10] YU T, GUAN G Q, ABUDULA A, et al.Heat-assisted production strategy for oceanic methane hydrate development in the Nankai Trough, Japan[J]. Journal of petroleum science and engineering, 2019, 174: 649-662.
[11] 陈朝阳, 游昌宇, 吕涛, 等. 南海北部天然气水合物藏垂直井网降压开采数值模拟[J]. 天然气工业, 2020, 40(8): 177-185.
CHEN Z Y, YOU C Y, LYU T, et al.Numerical simulation of the depressurization production of natural gas hydrate reservoirs by vertical well patterns in the northern South China Sea[J]. Natural gas industry, 2020, 40(8): 177-185.
[12] 吴能友, 李彦龙, 万义钊, 等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 2020, 40(8): 100-115.
WU N Y, LI Y L, WAN Y Z, et al.Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural gas industry, 2020, 40(8): 100-115.
[13] 陈强, 胡高伟, 李彦龙, 等. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 2020, 36(9): 44-55.
CHEN Q, HU G W, LI Y L, et al.A prospect review of new technology for development ofmarine gas hydrate resources[J]. Marine geology frontiers, 2020, 36(9): 44-55.
[14] 余定坤, 尹炳奎. 高压旋喷在某铬污染场地原位修复中的应用研究[J]. 广东化工, 2020, 47(10): 106, 118.
YU D K, YIN B K. Study on application of high pressure jet grounting to in-situ repair of a chromium contaminated site[J]. Guangdong chemical industry, 2020, 47(10): 106, 118.
[15] 杜海民, 郭利英. 高压旋喷灌浆技术在复杂地层条件下的应用[J]. 水利水电施工, 2019(2): 66-69.
DU H M, GUO L Y.Application of high pressure rotary jet grouting technology under complex stratum conditions[J]. Shuili shuidian shigong, 2019(2): 66-69.
[16] 李万里, 牛飞, 李森, 等. 高压旋喷灌浆技术在病险水库大坝防渗的应用[J]. 河南水利与南水北调, 2019, 48(12): 41-42.
LI W L, NIU F, LI S, et al.Application of jet grouting technology to dam seepage control of defect reservoir[J]. Henan water resources & south-to-north water diversion, 2019, 48(12): 41-42.
[17] LESOVIK V, VORONOV V, GLAGOLEV E, et al.Improving the behaviors of foam concrete through the use of composite binder[J]. Journal of building engineering, 2020, 31: 101414.
[18] NIKBAKHTAN B, POURRAHIMIAN Y, AGHABABAEI H.The effects of jet grouting on slope stability at Shahriar dam, Iran[C]//1st Canada-U.S. Rock Mechanics Symposium, Vancouver, Canada, 2007: 1075-1081.
[19] 杨蔡君, 王小敏, 王浩. 泡沫砂浆的研究及充填应用现状[J]. 现代矿业, 2016, 32(5): 218-219, 222.
YANG C J, WANG X M, WANG H.Research and application of foamed mortar[J]. Modern mining, 2016, 32(5): 218-219, 222.
[20] BOSWELL R, MYSHAKIN E, MORIDIS G, et al.India National Gas Hydrate Program Expedition 02 summary of scientific results: numerical simulation of reservoir response to depressurization[J]. Marine and petroleum geology, 2019, 108: 154-166.
[21] MYSHAKIN E M, SEOL Y, LIN J S, et al.Numerical simulations of depressurization-induced gas production from an interbedded turbidite gas hydrate-bearing sedimentary section in the offshore India: Site NGHP-02-16 (Area-B)[J]. Marine and petroleum geology, 2019, 108: 619-638.
[22] MORIDIS G J.User’s Manual for the Hydrate v1.5 option of TOUGH+v1.5: a code for the simulation of system behavior in hydrate-bearing geologic media[R]. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA, United States), 2014.
[23] XIA Y L, XU T F, YUAN Y L, et al.Effect of perforation interval design on gas production from the validated hydrate-bearing deposits with layered heterogeneity by depressurization[J]. Geofluids, 2020: 8833884.
[24] YUAN Y L, XU T F, XIN X, et al.Multiphase flow behavior of layered methane hydrate reservoir induced by gas production[J]. Geofluids, 2017: 7851031.
[25] CHEN L, FENG Y C, OKAJIMA J, et al.Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J]. Journal of natural gas science and engineering, 2018, 53: 55-66.
[26] KONNO Y, KATO A, YONEDA J, et al.Numerical analysis of gas production potential from a gas-hydrate reservoir at site NGHP-02-16, the Krishna-Godavari Basin, offshore India-Feasibility of depressurization method for ultra-deepwater environment[J]. Marine and petroleum geology, 2019, 108: 731-740.
[27] YONEDA J, OSHIMA M, KIDA M, et al.Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and petroleum geology, 2019, 108: 524-536.
[28] HOLLAND M E, SCHULTHEISS P J, ROBERTS J A.Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India[J]. Marine and petroleum geology, 2019, 108: 407-423.
[29] STONE H L.Probability model for estimating three-phase relative permeability[J]. Journal of petroleum technology, 1970, 22(2): 214-218.
[30] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America journal, 1980, 44(5): 892-898.
[31] ZHANG J M, LI X S, CHEN Z Y, et al.Numerical simulation of the improved gas production from low permeability hydrate reservoirs by using an enlarged highly permeable well wall[J]. Journal of petroleum science and engineering, 2019, 183: 106404.
[32] FENG Y C, CHEN L, SUZUKI A, et al.Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy conversion and management, 2019, 184: 194-204.
[33] 张保勇, 于洋, 靳凯, 等. 松散沉积物中降压幅度和饱和度对天然气水合物分解过程的影响[J]. 天然气工业, 2020, 40(8): 133-140.
ZHANG B Y, YU Y, JIN K, et al.Influence of depressurization amplitude and saturation in loose sediments on the dissociation process of natural gas hydrates[J]. Natural gas industry, 2020, 40(8): 133-140.

基金

国家自然科学基金青年基金(42006178); 中国博士后科学基金(BX20190136; 2019M661213); 吉林大学研究生创新基金(101832020CX244)

PDF(3025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/