波浪作用下浮式光伏组件基座水体交换实验研究

陈维, 刘文龙, 蒋茗韬, 毛晨浩

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 26-32.

PDF(2834 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2834 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 26-32. DOI: 10.19912/j.0254-0096.tynxb.2021-0191

波浪作用下浮式光伏组件基座水体交换实验研究

  • 陈维1, 刘文龙1, 蒋茗韬2, 毛晨浩1
作者信息 +

EXPERIMENTAL STUDY ON WATER EXCHANGE OF FLOATING SOLAR PHOTOVOLTAIC MODULE UNDER WAVE ACTION

  • Chen Wei1, Liu Wenlong1, Jiang Mingtao2, Mao Chenhao1
Author information +
文章历史 +

摘要

采用平面激光诱导荧光(PLIF)方法,对波浪作用下浮式光伏组件基座的交换通量进行定量分析。设计不同开孔交换面积的浮箱模型,并在不同波高和温度下进行实验。实验结果表明,水体在基座内停留时间与波高、基座单元间的连通面积及单元内水体与环境水体的温差有关,波高的影响最大,温度次之,连通面积最小。

Abstract

The planar laser induced fluorescence (PLIF) approach is used to quantify the exchange flux of the floating system under wave. The floating compartments model are designed with different open exchange areas and the experiments are performed under different temperature differences, and also different wave heights. Under wave condition, the experimental results show that the retention time depends on the wave height (hw) and open area (A). The influence of wave height is formed to be most significant, and the temperature is the second while the open area is the least.

关键词

光伏组件 / 波浪作用 / 质量传递 / 浮式发电站 / 平面激光诱导荧光

Key words

PV modules / wave effects / mass transfer / floating power plants / planar laser induced fluorescence

引用本文

导出引用
陈维, 刘文龙, 蒋茗韬, 毛晨浩. 波浪作用下浮式光伏组件基座水体交换实验研究[J]. 太阳能学报. 2022, 43(11): 26-32 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0191
Chen Wei, Liu Wenlong, Jiang Mingtao, Mao Chenhao. EXPERIMENTAL STUDY ON WATER EXCHANGE OF FLOATING SOLAR PHOTOVOLTAIC MODULE UNDER WAVE ACTION[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 26-32 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0191
中图分类号: P753   

参考文献

[1] BUONOMANO A, FORZANO C, KALOGIROU S A, et al.Building-façade integrated solar thermal collectors: Energy-economic performance and indoor comfort simulation model of a water based prototype for heating, cooling, and DHW production[J]. Renewable energy, 2019, 137: 20-36.
[2] JUNG J, HAN S U, KIM B.Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes[J]. Applied energy, 2019, 242: 57-68.
[3] KUMAR V A, RASHMITHA M, NARESH B, et al.Performance analysis of different photovoltaic technologies[C]//International Conference on Advanced Electronic Systems (ICAES), Pilani, India, 2013.
[4] RAHMAN M M, HASANUZZAMAN M, RAHIM N A.Effects of various parameters on PV-module power and efficiency[J]. Energy conversion and management, 2015, 103: 348-358.
[5] KUMAR P, JOHN S S, SHUKLA A K, et al.Performance analysis of 68 W flexible solar PV[J]. International journal of energy and environmental engineering, 2015, 2(3): 227-231.
[6] SHUKLA K N, RANGNEKAR S, SUDHAKAR K.A comparative study of exergetic performance of amorphous and polycrystalline solar PV modules[J]. International journal of exergy, 2015, 17(4): 433-455.
[7] 王春林, 郭放, 朱永利, 等. 大规模太阳能跨季节土壤储热系统设计优化[J]. 太阳能学报, 2021, 42(4): 320-327.
WANG C L, GUO F, ZHU Y L, et al.Design and optimization of large-scale seasonal borehole thermal energy storage system for solar energy[J]. Acta energiae solaris sinica, 2021, 42(4): 320-327.
[8] SUDHAKAR K, SRIVASTAVA T.Energy and exergy analysis of 36 W solar photovoltaic module[J]. International journal of ambient energy, 2013, 2(1): 31-44.
[9] ROSA C M, TINA G M, NIZETIC S.Floating photovoltaic plant and wastewater basins: an Australian project[J]. Energy procedia, 2017, 134: 664-674.
[10] HELFER F, LEMCKERT C, ZHANG H.Impacts of climate change on temperature and evaporation from a large eservoir in Australia[J]. Journal of hydrology, 2012, 475: 365-378.
[11] SANTAFÉ M R, SOLER J B T, ROMERO F J S, et al. Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs[J]. Energy, 2014, 67: 246-255.
[12] SAHU A, YADAV N, SUDHAKAR K.Floating photovoltaic power plant: a review[J]. Renewable and sustainable energy reviews, 2016, 66: 815-824.
[13] GAMARRA C, RONK J J.Floating solar: an emerging opportunity at the energy -water nexus[J]. Texas water journal, 2019, 10(1): 32-45.
[14] DUBEY S, SARVAIYA J N, SESHADRI B.Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-a review[J]. Energy procedia, 2013, 33: 311-321.
[15] AZMI M S M, OTHMAN M Y H, RUSLAN M H H, et al. Study on electrical power output of floating photovoltaic and conventional photovoltaic[J]. AIP conference Proceedings, 2013, 1571(1): 95-101.
[16] DASH P K, GUPTA N C.Effect of temperature on power output from different commercially available photovoltaic modules[J]. International journal of engineering research and applications, 2015, 5(1): 148-151.
[17] 刘艳峰, 李荟婷, 王登甲, 等. 太阳能集热系统过热影响因素分析[J]. 太阳能学报, 2021, 42(3): 463-468.
LIU Y F, LI H T, WANG D J, et al.Factor analysis of overheating in solar collector system[J]. Acta energiae solaris sinica, 2021, 42(3): 463-468.
[18] 宋子旭, 由世俊, 张欢, 等. 槽式太阳能新型腔式吸热器的热性能研究[J]. 太阳能学报, 2021, 42(3): 475-479.
SONG Z X, YOU S J, ZHANG H, et al.Thermal performance of solar trough system with a novel cavity receiver[J]. Acta energiae solaris sinica, 2021, 42(3): 475-479.
[19] LAW A W K, WANG H W. Measurement of mixing processes with combined digital particle image velocimetry and planar laser induced fluorescence[J]. Experimental thermal and fluid science, 2000, 22(3-4): 213-229.

基金

自然资源部海洋空间资源管理技术重点实验室开放基金(KF-2021-106); 国家自然科学基金(42006143)

PDF(2834 KB)

Accesses

Citation

Detail

段落导航
相关文章

/