针对基于惯容的结构控制装置(IDVA)最优作用位置问题,建立基于拉格朗日方程的风力机动力学模型,给出装置参数优化方法。优化问题考虑IDVA系统安装在塔架不同位置对减振性能的影响,以及塔架位移与IDVA相对位移之间的相互影响。结果表明:IDVA系统安装在塔架的位置越高减振效果越好。不考虑IDVA行程时,IDVA系统可极大提升减振性能;考虑IDVA行程时,IDVA系统减振性能有所下降,在该优化问题条件下,塔顶位移与IDVA行程存在冲突,无法同时得到改善。
Abstract
It has been demonstrated that mechanical loads of wind turbines can be effectively reduced by using inerter-based dynamic vibration absorbers (IDVA). This paper investigates the influence of IDVAs' locations on the load mitigation performance of wind turbines. To identify the optimal location of IDVA, a dynamic model based on Lagrange equations is derived for an onshore wind turbine, and an optimization method is proposed for IDVA parameters. In the optimization problem, the influence of IDVA locations on the tower in terms of the vibration reduction performance is considered, and the trade-off between the tower top displacement and the relative displacement of IDVA is studied. The results show that better vibration reduction performances can be obtained with higher IDVA locations. If the relative displacement of IDVA is not constrained, the vibration reduction performance can be significantly improved; while if the relative displacement of IDVA is constrained, the vibration reduction performance could be slightly degraded compared with the case without the relative displacement constraint of IDVA. It is found that there exist trade-offs between tower top displacement and the relative displacement of IDVA, where those cannot be simultaneously improved.
关键词
风力机 /
振动控制 /
动力学模型 /
结构控制 /
惯容
Key words
wind turbines /
vibration control /
dynamic models /
structural control /
inerter
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 金鑫, 林益帆, 谢双义, 等. 柱状漂浮式风力机结构振动控制[J]. 太阳能学报, 2021, 42(1): 210-214.
JIN X, LIN Y F, XIE S Y, et al.Structural vibration control of spar-type floating wind turbine[J]. Acta energiae solaris sinica, 2021, 42(1): 210-214.
[2] 张晓峰, 金鑫, 林益帆, 等. 基于TMD的漂浮式风力机振动控制[J]. 太阳能学报, 2020, 41(10): 292-300.
ZHANG X F, JIN X, LIN Y F, et al.Vibration control of floating wind turbine based on TMD[J]. Acta energiae solaris sinica, 2020, 41(10): 292-300.
[3] 丛聪, 杨冰. 基于调谐质量阻尼器的风力机叶片振动分散控制研究[J]. 太阳能学报, 2019, 40(1): 179-184.
CONG C, YANG B.Decentralized control of vibrations in wind turbine blades using multiple active tuned mass damper[J]. Acta energiae solaris sinica, 2019, 40(1): 179-184.
[4] 金鑫, 林益帆, 谢双义, 等. 基于TMD的半潜式风力机振动控制[J]. 太阳能学报, 2020, 41(6): 86-93.
JIN X, LIN Y F, XIE S Y, et al.Vibration control of semi-submersible wind turbine based on TMD[J]. Acta energiae solaris sinica, 2020, 41(6): 86-93.
[5] 金鑫, 林益帆, 谢双义, 等. 漂浮式风力机混合振动控制[J]. 太阳能学报, 2020, 41(11): 261-266.
JIN X, LIN Y F, XIE S Y, et al.Hybrid vibration control of floating wind turbines[J]. Acta energiae solaris sinica, 2020, 41(11): 261-266.
[6] SMITH M C.Synthesis of mechanical networks: the inerter[J]. IEEE transactions on automatic control, 2002, 47(10): 1648-1662.
[7] HU Y L, WANG J N, CHEN M Z Q, et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J]. Engineering structures, 2018, 177: 198-209.
[8] SARKAR S, FITZGERALD B.Vibration control of spar-type floating offshore wind turbine towers using a tuned mass-damper-inerter[J]. Structural control and health monitoring, 2020, 27(1): e2471.
[9] ZHANG Z L, FITZGERALD B.Tuned mass-damper- inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades[J]. Engineering structures, 2020, 221: 110928.
[10] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. Golden National Renewable Energy Laboratory Technical Report, 2009.
[11] 丛聪. 基于调频质量阻尼器的并网风力机叶片振动主动控制[J]. 可再生能源, 2019, 37(2): 267-273.
CONG C.Active control of rotational blade in grid-connected wind turbine with tuned mass damper[J]. Renewable energy resources, 2019, 37(2): 267-273.
[12] FITZGERALD B, BASU B, NIELSEN S R K. Active tuned mass dampers for control of in-plane vibrations of wind turbine blades[J]. Structural control and health monitoring, 2013, 20(12): 1377-1396.
基金
国家自然科学基金(62173125; 62073121; 62003131); 国家自然科学基金-国家电网联合基金(U1966202); 中央高校基本科研业务费专项资金(B210202058)