基于单层MNCl(M=Zr,Hf)的温差发电模型仿真分析

刘新宇, 原绍恒, 徐斌, 安小宁

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 351-356.

PDF(1801 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1801 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 351-356. DOI: 10.19912/j.0254-0096.tynxb.2021-0320

基于单层MNCl(M=Zr,Hf)的温差发电模型仿真分析

  • 刘新宇, 原绍恒, 徐斌, 安小宁
作者信息 +

ANALYSIS AND SIMULATION OF THERMOELECTRIC POWER GENERATION BASED ON MONOLAYERS MNCL(M=Zr, Hf)

  • Liu Xinyu, Yuan Shaoheng, Xu Bin, An Xiaoning
Author information +
文章历史 +

摘要

在研究单层ZrNCl和HfNCl材料热电性能的基础上,搭建温差发电模型,研究不同规格温差发电模块的输出性能,然后与其他学者研究的温差发电模型及热电材料的热电转换效率进行对比分析。结果表明:在低温区和中温区,单层ZrNCl的热电转换效率更高。温差发电模块的输出功率随温差发电模块横截面积和热电单元对数的增大而增大。单层ZrNCl的热电转换效率接近当前最具代表性的Bi2Te3低温热电材料的热电转换效率,表明该材料具有良好的市场应用价值。

Abstract

Based on the thermoelectric properties of monolayers ZrNCl and HfNCl, a thermoelectric power generation model was established in this paper to study the output performance of different specifications of thermoelectric power modules. Then the thermoelectric conversion efficiency was compared with thermoelectric power generation models and thermoelectric materials studied by other scholars. The results show that the thermoelectric conversion efficiency of ZrNCl monolayer is higher than that of others in low temperature zone and medium temperature zone; the output power of the thermoelectric power generation module increases with the increase of the cross-sectional area of the thermoelectric power generation module and the number of thermoelectric units. The thermoelectric conversion efficiency of the single-layer ZrNCl is close to that of Bi2Te3, the most representative low-temperature thermoelectric material at present, indicating that this material has a good market application value.

关键词

温差发电 / 热电功率 / 数值仿真 / 热电性能

Key words

thermoelectric power / thermoelectric power / numerical simulation / thermoelectric properties

引用本文

导出引用
刘新宇, 原绍恒, 徐斌, 安小宁. 基于单层MNCl(M=Zr,Hf)的温差发电模型仿真分析[J]. 太阳能学报. 2022, 43(2): 351-356 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0320
Liu Xinyu, Yuan Shaoheng, Xu Bin, An Xiaoning. ANALYSIS AND SIMULATION OF THERMOELECTRIC POWER GENERATION BASED ON MONOLAYERS MNCL(M=Zr, Hf)[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 351-356 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0320
中图分类号: TM913   

参考文献

[1] 黄志勇, 吴知非, 周世新, 等. 温差发电器及其在航天与核电领域的应用[J]. 原子能科学技术, 2004, 38(增刊): 42-47.
HUANG Z Y, WU Z F, ZHOU S X, et al.Thermoelectric generator and its application in space and nuclear fields[J]. Atomic energy science and technology, 2004, 38(S): 42-47.
[2] 王军, 张超震, 董彦, 等. 温差发电模型的热电性能数值计算和分析[J]. 太阳能学报, 2019, 40(1): 44-50.
WANG J, ZHANG C Z, DONG Y, et al.Numerical calculation and analysis on properties of thermoelectric generation model[J]. Acta energiae solaris sinica, 2019, 40(1): 44-50.
[3] 王统才. 中低温余热回收利用温差发电系统研究[D]. 上海: 华东理工大学, 2017.
WANG T C.Study on thermoelectric power generation system for recovery and utilization of waste heat at medium and low temperature[D]. Shanghai: East China University of Science and Technology, 2017.
[4] HU L P, ZHU T J, WANG Y G, et al.Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J]. NPG Asia materials, 2014, 6(2): e88.
[5] XU Z J, HU L P, YING P J, et al.Enhanced thermo-electric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation[J]. Acta materialia, 2015, 84(1): 385-392.
[6] VENKATASUBRAMANIAN R, SILVOLA E, COLPITTS C, et al.Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.
[7] PEI Y L, TAN G J, FENG D, et al.Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in PbTe system[J]. Advanced energy materials, 2017, 7(3): 1601450.
[8] LIM Y S, PARK K H, TAK J Y, et al.Colligative thermo- electric transport properties in n-type filled CoSb3 determined by guest electrons in a host lattice[J]. Journal of applied physics, 2016, 119(11): 115104.
[9] HICKS L D, DRESSELHAUS M S.Thermoelectric figure of merit of a one-dimensional conductor[J]. Physical review B, 1993, 47(24): 16631-16634.
[10] SNYDER G J, TOBERER E S.Complex thermoelectric materials[J]. Nature materials, 2008, 7(2): 105-114.
[11] MADSEN G K H, BLAHA P, SCHWARZ K, et al. Efficient linearization of the augmented plane-wave method[J]. Physical review B, 2001, 64: 195134.
[12] TOGO A, OBA F, TANAKA I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical review B, 2008, 78: 134106.
[13] LI W, CARRETE J, KATCHO N A, et al.ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer physics communications, 2014, 185(6): 1747-1758.
[14] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真[J]. 物理学报, 2014, 63(19): 197201-1-197201-6.
WANG C H, LIN T, ZENG Z H. Analysis and simulation of semiconductor thermo electric power generation process[J]. Acta physica sinica, 2014, 63(19): 197201-1-197201-6.
[15] PAN Y, WEI T R, CAO Q, et al.Mechanically enhanced p-and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering[J]. Materials science and engineering: B, 2015, 197: 75-81.

基金

国家自然科学基金(U1404108; U1804149)

PDF(1801 KB)

Accesses

Citation

Detail

段落导航
相关文章

/