以猪体为原料,以高位热值、C元素回收率、N元素残留率作为生物油质量指标,采用响应面法研究反应温度(220~300 ℃)、反应时间(40~80 min)、固含量(10%~30%)对猪体水热转化生物油产率与质量的影响。研究结果表明:反应条件均会影响水热反应的进行且温度影响最显著,分别在不同反应条件下得到单一指标最优的生物油;生物油的最大产率为76.94%(278 ℃、64 min、29%固含量),最大HHV值为38.63 MJ/kg(290 ℃、47 min、30%固含量),最大C元素回收率为93.16%(260 ℃、60 min、10%固含量),最低N元素残留率为15.52%(220 ℃、40 min、12%固含量)。生物油的元素分析结果表明水热液化可有效降低生物油中N、O元素含量,提高生物油品质。傅里叶变换红外光谱分析与热重分析结果表明,生物油的化学成分复杂且以分子量较大、碳链较长的有机物为主。
Abstract
To investigate the effects of different parameters temperature (220 ℃-300 ℃), reaction time (40 min-80 min), total solid content (10%-30%) on the yields and qualities of bio-oil, Response surface method is used for analysis of hydrothermal liquefaction treatment process for pig carcass to obtain indicators of bio-oil quality such as higher heating value, C recovery rate and N residual rate. The results showed that all the reaction conditions have effect on hydrothermal reaction process, most of which is temperature. The bio-oil with the most satisfied single index was obtained from different reaction conditions. To be more specific, the highest yield of bio-oil obtained is 76.94% (278 ℃, 64 min, 29%); the highest HHV obtained is 38.63 MJ/kg (290 ℃, 47 min, 30%); the highest C recovery rate obtained is 93.16% (260 ℃, 60 min, 10%), and the lowest N residual rate obtained is 15.52% (220 ℃, 40 min, 12%). The elemental analysis of bio-oil shows that hydrothermal liquefaction can effectively reduce the content of N and O in bio-oil and improve the quality of bio-oil, meanwhile, the FT-IR and TG/DTG analysis shows that the chemical composition of bio-oil is complex and mainly composed of organic compounds with large molecular weight and long carbon chain.
关键词
水热液化 /
生物油 /
理化特性 /
工艺参数优化 /
猪体
Key words
hydrothermal liquefaction /
bio-oil /
physical and chemical properties /
parameter optimization /
pig carcass
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YANG T, LI R, HU Y, et al.An outbreak of Getah virus infection among pigs in China, 2017[J]. Transboundary and emerging diseases, 2018, 65(3): 632-637.
[2] GWYTHER C L, WILLIAMS A P, GOLYSHIN P N, et al.The environmental and biosecurity characteristics of livestock carcass disposal methods: a review[J]. Waste management, 2011, 31(4): 767-778.
[3] 谭鹤群, 聂杰, 万鹏, 等. 病死猪辅热快速好氧发酵工艺参数优化与装备研制[J]. 农业工程学报, 2019, 35(8): 262-268.
TAN H Q, NIE J, WAN P, et al.Process parameter optimization and equipment development of thermophilic aerobic fermentation of dead pigs[J]. Transactions of the CSAE, 2019, 35(8): 262-268.
[4] CHOWDHURY S, KIM G H, BOLAN N, et al.A critical review on risk evaluation and hazardous management in carcass burial[J]. Process safety and environmental protection, 2019, 123: 272-288.
[5] TEKIN K, KARAGOEZ S, BEKTAS S.A review of hydrothermal biomass processing[J]. Renewable and sustainable energy reviews, 2014, 40: 673-687.
[6] TOOR S, ROSENDAHL L, RUDOLF A.Hydrothermal liquefaction of biomass: a review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342.
[7] MEKONNEN T H, MUSSONE P G, EL-THAHER N, et al.Subcritical hydrolysis and characterization of waste proteinaceous biomass for value added applications[J]. Journal of chemical technology & biotechnology, 2015, 90(3): 476-483.
[8] DUCEY T F, COLLINS J C, RO K S, et al.Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived DNA[J]. Frontiers of environmental science & engineering, 2017, 11(3): 9.
[9] BILLER P, ROSS A B.Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different bio-chemical content[J]. Bioresource technology, 2011, 102(1): 215-225.
[10] AKHTAR J, AMIN N.A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and sustainable energy reviews, 2011, 15(3): 1615-1624.
[11] KANTARLI C, ARZU K, UCAR S, et al.Conversion of poultry wastes into energy feedstocks[J]. Waste management, 2016, 56: 530-539.
[12] 张鑫, 吴可, 周檀, 等. 病死鸡微波水热处理制备生物油及其特性研究[J]. 太阳能学报, 2019, 40(11): 3196-3203.
ZHANG X, WU K, ZHOU T, et al.Characteristics of bio-oil from microwave hydrothermal of dead chicken[J]. Acta energiae solaris sinica, 2019, 40(11): 3196-3203.
[13] PETERSON A A, LACHANCE R P, TESTER J W.Kinetic evidence of the maillard reaction in hydrothermal biomass processing: glucose glycine interactions in high-temperature, high-pressure water[J]. Industrial & engineering chemistry research, 2010, 49(5): 2107-2117.
[14] GUO Y, SONG W, LU J, et al.Hydrothermal liquefaction of cyanophyta: evaluation of potential bio-crude oil production and component analysis[J]. Algal research, 2015, 11: 242-247.
[15] 盖超. 低脂微藻水热液化生物油实验研究与机理分析[D]. 济南: 山东大学, 2014.
GAI C.A study on hydrothermal liquefaction of low-lipid microalgae to produce bio-crude oil through experimental investigation and mechanism analysis[D]. Ji’nan: Shandong University, 2014.
[16] YANG C, WANG S Z, REN M M, et al.Hydrothermal liquefaction of animal carcass for biocrude oil[J]. Energy & fuels, 2019, 33(11): 11302-11309.
[17] CHIABERGE S, LEONARDIS I, FIORANI T, et al.Amides in bio-oil by hydrothermal liquefaction of organic wastes: a mass spectrometric study of the thermochemical reaction products of binary mixtures of amino acids and fatty acids[J]. Energy & fuels, 2013, 27(9): 5287-5297.
[18] CHEN W T, ZHANG Y H, ZHANG J X, et al.Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil[J]. Bioresource technology, 2014, 152: 130-139.
[19] SATO N, QUITAIN A, KANG K, et al.Reaction Kinetics of amino acid decomposition in high-temperature and high-pressure water[J]. Industrial & engineering chemistry research, 2004, 43(13): 3217-3222.
[20] ZHANG X, WU K, YUAN Q X.Comparative study of microwave and conventional hydrothermal treatment of chicken carcasses: bio-oil yields and properties[J]. Energy, 2020, 200: 117539.
[21] TORRI C, ALBA L G, SAMORI C, et al.Hydrothermal treatment(HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation[J]. Energy & fuels, 2012, 26(1): 658-671.
[22] NANDA S, RANA R, HUNTER H N, et al.Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production[J]. Chemical engineering science, 2018, 195: 935-945.