温度对三元燃料运动黏度的影响机制研究

赵中锦, 李法社, 王霜, 王文超, 肖黑, 马鑫

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 331-336.

PDF(1605 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1605 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 331-336. DOI: 10.19912/j.0254-0096.tynxb.2021-0469

温度对三元燃料运动黏度的影响机制研究

  • 赵中锦1~3, 李法社1~3, 王霜1~3, 王文超1~3, 肖黑1, 马鑫1~3
作者信息 +

EFFECT MECHANISM OF TEMPERATURE ON KINEMATIC VISCOSITY OF TERNARY FUEL BLENDS

  • Zhao Zhongjin1~3, Li Fashe1~3, Wang Shuang1~3, Wang Wenchao1~3, Xiao Hei1, Ma Xin1~3
Author information +
文章历史 +

摘要

为探究温度对生物柴油-乙醇-柴油三元燃料运动黏度的影响规律,以大豆油、小桐子油和餐饮废油生物柴油-乙醇-柴油3种燃料为研究对象,建立三元燃料“运动黏度-温度”高精度数学模型,该模型复相关系数均在0.99以上,最大误差为0.03,能精确预测燃料运动黏度随温度的变化规律。结果表明,餐饮废油混合燃料的黏度梯度最大,受温度影响程度最高,流动性能变化显著。3种三元混合燃料的临界预热温度分别为59.1、63.4和61.7 ℃,燃料在预热温度之下运行成本最低、雾化效果最佳。

Abstract

In order to study the effect of temperature on the kinematic viscosity of ternary fuel blends,the biodiesel (soybean oil/Jatropha oil/waste cooking oil)-ethanol-diesel fuel blend are prepared. A mathematical model which could precisely describe the influence of temperature on kinematic viscosity of ternary fuel blends is established. The complex correlation coefficient of the model is higher than 0.99 while the maximum error is 0.03. According to the fitting results, the highest viscosity gradient of waste cooking oil biodiesel-ethanol-diesel fuel blend would be influenced by temperature greatly and the flow property of which is also changed remarkably. Furthermore, the critical preheating temperature values for three kinds of ternary fuel blends are 59.1 ℃, 63.4 ℃ and 61.7 ℃, respectively and the operating cost are lowest and the atomization effect are the best when the blends are preheated at the critical preheating temperatures.

关键词

生物柴油 / 运动黏度 / 数学模型 / 黏度梯度 / 临界预热温度

Key words

biodiesel / kinematic viscosity / mathematical models / viscosity gradient / critical preheating temperature

引用本文

导出引用
赵中锦, 李法社, 王霜, 王文超, 肖黑, 马鑫. 温度对三元燃料运动黏度的影响机制研究[J]. 太阳能学报. 2022, 43(11): 331-336 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0469
Zhao Zhongjin, Li Fashe, Wang Shuang, Wang Wenchao, Xiao Hei, Ma Xin. EFFECT MECHANISM OF TEMPERATURE ON KINEMATIC VISCOSITY OF TERNARY FUEL BLENDS[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 331-336 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0469
中图分类号: TK6   

参考文献

[1] 黄静, 刘国华, 卢永娟. 生物柴油的研究现状及进展[J]. 广东化工, 2018, 45(12): 129-130.
HUANG J, LIU G H, LU Y J.Research on status and progress of biodiesel[J]. Guangdong chemical industry, 2018, 45(12): 129-130.
[2] JIANG S J, ZHAO X H.Trausglutaminase-induced cross-linking and glucosamine conjugation in soybean protein isolates and its impacts on some functional properties of the products[J]. European food research and technology, 2010, 231(5): 679-689.
[3] SONG C L, ZHAO X H.Structure and property modification of an oligochitosan-glycosylated and crosslinked soy-bean protein generated by microbial transglutaminase[J]. Food chem, 2014, 163(12): 114-119.
[4] 曹建明, 武奎, 彭畅. 乙醇/生物柴油/柴油混合燃料试验研究[J]. 内燃机, 2020(3): 12-16.
CAO J M,WU K,PENG C.Experimental research on ethanol/biodiesel/diesel mixed fuel[J]. Internal combustion engine, 2020(3): 12-16.
[5] MATE Z.Ethanol-biodiesel-diesel blends as a diesel extender option on compression ignition engines[J]. Transport, 2001, 26(3): 303-309.
[6] 张起. 加氢生物柴油-乙醇-柴油三元燃料特性及优化设计[D]. 镇江: 江苏大学, 2019.
ZHANG Q.Characteristics and optimization design of hydrogenated biodiesel-ethanol-diesel ternary fuel[D]. Zhenjiang: Jiangsu University, 2019.
[7] GULUM M, BILGIN A.Two-term power models for estimating kinematic viscosities of different biodiesel-diesel fuel blends[J]. Fuel processing technology, 2016, 149: 121-130.
[8] DING H Z, WANG C, ZHU X F.Estimation of the kinematic viscosities of bio-oil/alcohol blends: kinematic viscosity-temperature formula and mixing rules[J]. Fuel, 2019, 254: 115687.
[9] AMIT S, NEERJA S, KUSAM D, et al.Study of kinematic viscosity and density of biodiesels exposed to radiations[J]. Materials today: proceedings, 2021, 46: 5516-5522.
[10] GMEHLING J, LOHMANN J, JAKOB A, et al.A modified UNIFAC (Dortmund) model. 3. revision and extension[J]. Industrial & engineering chemistry research, 1998: 95121477.
[11] GB 510—1983, 石油产品凝点测定法[S].
GB 510—1983, Freezing point determination method of petroleum products[S].
[12] 中国石油化工股份有限公司石油化工科学研究院. 石油产品铜片腐蚀试验法[S]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017.
Petrochemical Research Institute, China Petroleum and Chemical Corporation. Corrosion test method for copper wafers of petroleum products[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of China, 2017.
[13] SENDZIKIENE E,MAKAREVICIENE V,JANULIS P.Oxidation stability of biodiesel fuel produced from fatty wastes[J]. Polish journal of environmental studies, 2005, 14(3): 335-339
[14] GB 265—1988, 石油产品运动黏度测定法和动力黏度计算法[S].
GB 265—1988, Kinematic viscosity determination of petroleum products and calculation method of dynamic viscosity[S].
[15] 范鹏. 柴油温度对柴油机喷嘴孔内流动特性影响研究[D]. 杭州: 浙江大学, 2012: 38-41.
FAN P.Effect of diesel temperature on flow characteristics in nozzle hole of diesel engine[D]. Hangzhou: Zhejiang University, 2012: 38-41.
[16] 倪梓皓, 李法社, 韩刚, 等. 小桐子生物柴油氧化前后运动黏度变化分析[J]. 中国粮油学报, 2019, 34(7): 78-83.
NI Z H, LI F S, HAN G, et al.Kinetic viscosity changes of Jatropha CURCAS biodiesel before and after oxidation[J]. Chinese journal of grain and oil, 2019, 34(7): 78-83.
[17] KEERSCHBAUM S, RINKE G.Measurement of the temperature dependent viscosity of biodiesel fuels[J]. Fuel, 2004, 83: 287-291.
[18] WANG S, SUI M, LUO H.An optimized model for predicting kinematic viscosities of biodiesel fuels[J]. Fuel cells, 2020, 21(1): 21-25.

基金

国家自然科学基金(51766007); 云南省自然科学基金(2018FB092); NSFC云南联合基金(U1602272); 省部共建复杂有色金属资源清洁利用国家重点实验室自设项目(CNMRCUTS1704)

PDF(1605 KB)

Accesses

Citation

Detail

段落导航
相关文章

/