以中国福建某较深海域风电场为背景,提出一种海上风电宽浅型三筒导管架基础结构,继而通过建立考虑分层土体的基础整体有限元模型,对分层土中宽浅型三筒导管架基础静动力特性及浮运稳性展开研究。研究结果表明,正常荷载作用下此基础结构法兰倾斜率为3.98‰,满足规范要求:极限荷载作用下,基础结构各部位应力满足要求;基础-塔筒-机组整体共振校核满足要求:基础可在4级风浪以内的海况下进行自浮远距离拖航浮运;等效疲劳荷载作用下,基础结构疲劳损伤满足要求。
Abstract
The wide and shallow three-bucket jacket foundation structure for offshore wind power was proposed based on a deep sea wind farm in Fujian, China. Then, the static and dynamic characteristics, floating stability of the wide and shallow three-bucket jacket foundation in layered soil were studied by establishing a foundation integral finite element model considering layered soil. The results show that the flange inclination rate of the foundation structure is 3.98‰ under normal load, which meets the requirements of the specifications. Under the ultimate load, the stress of each part of the foundation structure meets the requirements. The overall resonance check of foundation-tower-turbine meets the requirements: The foundation can be towed for long distance under the sea conditions within the wind and waves of level 4. Under the equivalent fatigue load, the fatigue damage of the foundation meets the requirements.
关键词
海洋技术 /
海上风电 /
基础 /
多筒基础 /
导管架 /
自浮运输
Key words
marine technology /
offshore wind turbines /
foundations /
multi-bucket foundation /
jacket /
floating transportation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LEUNG D YC, YUAN Y.Wind energy development and its environmental impact: a review[J]. Renewable and sustainable energy reviews, 2012, 16(1): 1031-1039.
[2] DEAL W F.Wind power: an emerging energy resource[J]. Technology and engineering teacher, 2010, 70: 9-15.
[3] KOH J H, NG E.Downwind offshore wind turbines: Opportunities, trends and technical challenges[J]. Renewable and sustainable energy reviews, 2016, 54: 797-808.
[4] 张凡. 深水大容量海上风电筒型基础结构研究[D]. 天津: 天津大学, 2018.
ZHANG F.Research on bucket foundation with large-capacity of offshore wind power in deep water[D]. Tianjin: Tianjin University, 2018.
[5] BHATTACHARYA S.Challenges in design of foundations for offshore wind turbines[J]. Engineering and technology reference, 2014, 1(1): 1-9.
[6] 李大勇, 陈庆剑, 张雨坤, 等. 海上风机吸力基础的水平受荷研究综述[J]. 海洋工程, 2020, 38(4): 137-147.
LI D Y, CHEN Q J, ZHANG Y K, et al.Review of horizontal loading on suction caisson of offshore wind turbines[J]. The ocean engineering, 2020, 38(4): 137-147.
[7] 李大勇, 曹立雪, 高盟, 等. 水平荷载作用下裙式吸力基础承载性能研究[J]. 海洋工程, 2013, 31(1): 67-73.
LI D Y, CAO L X, GAO M, et al.Bearing capacity of skirted suction caisson in sand under horizontal monotonic/cyclicloading[J]. The ocean engineering, 2013, 31(1): 67-73.
[8] 胡雪扬, 贾小刚, 莫伟南. 台湾海峡某典型深远海域风电场风机基础选型与优化[J]. 水电与新能源, 2020, 34(3): 28-32.
HU X Y, JIA X G, MO W N.Type selection and optimization of wind turbine foundation for a typical deep sea wind farm in Taiwan strait[J]. Hydropower and new energy, 2020, 34(3): 28-32.
[9] 魏兴麟, 彭亚, 柯逸思. 海上风电深水导管架基础的应力响应研究[J]. 水电与新能源, 2021, 35(2): 29-34.
WEI X L, PENG Y, KE Y S.On the stress response of jacket foundation for offshore wind turbine in deep sea area[J]. Hydropower and new energy, 2021, 35(2): 29-34.
[10] HAVER S K.A possible freak wave event measured at the draupner jacket January 1 1995[J]. Actes de colloques ifremer, 2004: 1-8.
[11] BYE A, ERBRICH C, ROGNLIEN B, et al.Geotechnical design of bucket foundations[C]//Offshore Technology Conference, Houston, Texas, USA, 1995.
[12] EHRMANN A, PENNER N, GEBHARDT C G, et al.Offshore support structures with suction buckets: Parameter fitting of a simplified foundation model[C]//International Ocean and Polar Engineering Conference, Rhodes, Greece, 2016.
[13] SHEN K M, ZHANG Y H, KLINKVORT R T, et al.Numerical simulation of suction bucket under vertical tension loading[C]//Offshore Site Investigation Geotechnics 8th International Conference Proceeding, London, UK, 2017.
[14] MARIJN D.Achievement under pressure: Suction pile jackets for the aberdeen offshore wind farm[C]//Wind Europe 2018 Conference, Woerden, Netherlands, 2018.
[15] API RP 2A-WSD, Recommended practice for planning,designing and constructing fixed offshore platforms-working stress design[S].
[16] 伊法. 吸力筒多筒基础优化设计数值模拟研究[D]. 南京: 东南大学, 2019.
AHMAD I.Suction caissons optimization through caissons arrangement and modeling[D]. Nanjing: Southeast University, 2019.
[17] NB/T 10105—2018, 海上风电场工程风电机组基础设计规范[S].
NB/T 10105—2018, Code for foundation design of wind turbines for offshore wind farm projects[S].
[18] DNV-OSJ 101, Design of offshore wind turbine structures[S].
[19] 中国船级社. 海上拖航指南[M]. 北京: 人民交通出版社, 2011.
CCS. Guidelines for towage at sea[M]. Beijing: China Communication Press, 2011.
[20] DNVGL-ST-0126, Support structures for wind turbines[S].
基金
福建深远海海上风电机组基础设计施工关键技术研究项目(CTGFB/003-2018); 国家自然科学基金(51909188)