采用k-ω SST湍流模型,研究加三角翼涡流发生器(VGs)的DU91-W2-250翼段的动态失速过程,从升阻力系数、表面压力系数、流场、VGs脱落涡发展过程等方面,分析VGs弦向位置(x/c)对动态失速抑制作用的影响规律。结果表明x/c对翼型动态失速过程中的增升效果影响较大,VGs增大了翼型的失速攻角。升阻力及压力结果显示,x/c=0.25时增升效果最佳,翼段上表面压力系数Cp较大;x/c=0.20~0.25时尾缘附着流动较好;从涡量峰值变化看,x/c过大、过小时对分离涡的抑制作用有所减弱;从VGs脱落涡的变化看,x/c=0.20~0.25时VGs下游脱落涡强相对较大,旋涡耗散速度较慢。总而言之,VGs在x/c=0.20~0.25时对翼段气动性能提升效果最佳。
Abstract
The dynamic stall process of DU91-W2-250 blade section with delta wing vortex generators(VGs) is studied by using the k-ω SST turbulence model. The effect and law of the chordal position of VGs(x/c) on the dynamic stall inhibition is analyzed from the aspects of the lift and drag coefficient, surface pressure coefficient, flow field and the development process of VGs shedding vortex. The results show that x/c has a great influence on the lift increase effect during the dynamic stall of airfoil, and VGs increase the stall angle of attack of airfoil. The results of lift, resistance and pressure show that when x/c=0.25, the lift increase effect is the best, and the Cp on the upper surface of the blade section is larger. When x/c=0.20-0.25, the trailing edge adhesion flow is better. From the change of vorticity peak value, when the value of x/c is too large or too small, the inhibition effect of VGs on separated vortex is weakened. According to the variation of VGs shedding vortex, when x/c=0.20-0.25, the shedding vortex intensity is relatively large downstream of VGs, and the vortex dissipation velocity is slow. In conclusion, when the VGs are installed at x/c=0.20-0.25, the aerodynamic performance of the blade section can be improved best.
关键词
流动控制 /
数值模拟 /
风力机 /
动态失速 /
涡流发生器 /
k-ω SST湍流模型
Key words
flow control /
numerical simulation /
wind turbines /
dynamic stall /
vortex generators /
k-ω SST turbulence model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TIMMER W A.Wind tunnel results for a 25% thick wind turbine blade airfoil[C]//European Community Wind Energy Conference, Lubeck-Travemunde, Gemany, 1993.
[2] 钟易成, 陈晓. 三角形埋入式涡流发生器几何参数对其涡的影响[J]. 航空动力学报, 1996, 11(3): 241-244.
ZHONG Y C, CHEN X.The influence of geometric parameters of triangle embedded vortex generator on its vortex[J]. Journal of aeronautical dynamics, 1996, 11(3): 241-244.
[3] ALLAN B G, YAO C, LIN J C.Numerical simulations of vortex generator vanes and jets on a flat plate[C]//Presented at 1st Flow Control Conference, St. Louis, Missour, USA, 2002.
[4] 张进, 张彬乾, 阎文成, 等. 微型涡流发生器控制超临界翼型边界层分离实验研究[J]. 实验流体力学, 2005, 19(3): 58-60.
ZHANG J, ZHANG B Q, YAN W C, et al.Experimental study on boundary layer separation of supercritical airfoil controlled by micro vortex generator[J]. Experimental fluid dynamics, 2005, 19(3): 58-60.
[5] LIN J C.Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in aerospace sciences, 2002, 38: 389-420.
[6] BALDACCHINO D, FERREIRA C, TAVERNIER D D, et al.Experimental parameter study for passive vortex generators on a 30% thick airfoil[J]. Wind energy, 2018, 21(9): 745-765.
[7] ZHANG L, YANG K, XU J Z.Effects on wind turbine airfoils by vortex generators[J]. Journal of engineering thermophysics, 2010, 31(5): 749-752.
[8] 王莹, 郭鹏程, 李常, 等. 涡流发生器对风力机翼型气动特性的影响研究[J]. 节能技术, 2019, 37(4): 296-302.
WANG Y, GUO P C, LI C, et al.Influence of vortex generator on aerodynamic characteristics of wind turbine wing[J]. Energy saving technology, 2019, 37(4): 296-302.
[9] ZHU C Y, WANG T G, WU J H.Numerical investigation of passive vortex generators on a wind turbine airfoil undergoing pitch oscillations[J]. Energies, 2019, 12(4): 1-19.
[10] 赵振宙, 苏德程, 王同光, 等. 涡流发生器对动态失速影响的模拟研究[J]. 机械工程学报, 2019, 55(24): 203-209.
ZHAO Z Z, SU D C, WANG T G, et al.Simulation study on the effect of vortex generators on dynamic stall[J]. Journal of mechanical engineering, 2019, 55(24): 203-209.
[11] 赵振宙, 孟令玉, 王同光, 等. 涡流发生器对风力机翼段动态失速影响[J]. 哈尔滨工程大学学报, 2021, 42(2): 233-239.
ZHAO Z Z, MENG L Y, WANG T G, et al.Influence of vortex generators on dynamic stall of wind turbine airfoil segment[J]. Journal of Harbin Engineering University, 2021, 42(2): 233-239.
[12] RAMSAY R F, HOFFMAN M J, GREGOREK G M.Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. 1995.
基金
国家自然科学基金(51876054; 11502070); 南通市民生科技重点项目(MS22019018)