风电消纳下多型号制氢机组阵列优化调度研究

林涛, 赵丹阳, 严寒

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 466-473.

PDF(1651 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1651 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 466-473. DOI: 10.19912/j.0254-0096.tynxb.2021-0499

风电消纳下多型号制氢机组阵列优化调度研究

  • 林涛1,2, 赵丹阳1,2, 严寒1,2
作者信息 +

RESEARCH ON OPTIMAL SCHEDULING OF MULTI-MODEL HYDROGEN GENERATOR ARRAY UNDER WIND POWER CONSUMPTION

  • Lin Tao1,2, Zhao Danyang1,2, Yan Han1,2
Author information +
文章历史 +

摘要

以风电消纳下多型号制氢机组阵列的优化调度为研究对象,首先研究碱式制氢机组的功率-效率特性。在此基础上,以经济收益最大化为目标,对机组出力进行双层优化。使用所提混合二进制萤火虫算法进行机组启停状态优化,粒子群算法进行考虑功率-效率特性的机组功率分配优化。最后对多种阵列方案的经济收益和风电消纳能力进行对比分析。实验结果证明所提算法的有效性和多型号制氢机组阵列方案的优越性。

Abstract

A scheduling optimization strategy for the multi-model hyd'rogen production unit array to consume abandoned wind power was presented in this paper. First, the alkaline hydrogen production unit's power-efficiency characteristics were investigated. On this basis, a dual-level optimization model of the hydrogen production unit's output was established to maximize the economic benefits. The proposed hybrid binary firefly algorithm was used to optimize the unit combination. The particle swarm optimization algorithm was employed to optimize the power allocation of the unit, which considers the hydrogen production unit's power-efficiency characteristics. Finally, a comparison of the economic benefits and wind power consumption capacity of various array schemes were conducted. The results show that the proposed algorithm is effective and that the multi-model hydrogen production unit array scheme is superior.

关键词

风电 / 制氢 / 电解槽 / 功率-效率特性 / 萤火虫算法 / 消纳

Key words

wind power / hydrogen production / electrolytic cells / power efficiency characteristic / firefly algorithm / consumption

引用本文

导出引用
林涛, 赵丹阳, 严寒. 风电消纳下多型号制氢机组阵列优化调度研究[J]. 太阳能学报. 2022, 43(11): 466-473 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0499
Lin Tao, Zhao Danyang, Yan Han. RESEARCH ON OPTIMAL SCHEDULING OF MULTI-MODEL HYDROGEN GENERATOR ARRAY UNDER WIND POWER CONSUMPTION[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 466-473 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0499
中图分类号: TM614   

参考文献

[1] 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083.
SUN H X, LI Z, CHEN A B, et al.Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
[2] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[3] 邓浩, 陈洁, 腾扬新, 等. 风氢耦合系统能量管理策略研究[J]. 太阳能学报, 2021, 42(1): 256-263.
DENF H, CHEN J, TENG Y X, et al.Energy management strategy of wind power coupled with hydrogen system[J]. Acta energiae solaris sinica, 2021, 42(1): 256-263.
[4] 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14): 3371-3384.
KONG L G, CAI G W, LI L F, et al.Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384.
[5] 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94.
CAI G W, CHEN C, KONG L G, et al.Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 84-94.
[6] 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472.
SHEN X J, NIE C Y, LYU H, et al.Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472.
[7] DUC T N, KIYOTAKA G, EARUKI, et al. Optimization strategy for high efficiency 20 kW-class direct coupled photovoltaic-electrolyzer system based on experiment data[J]. International journal of hydrogen energy, 2019, 44(49): 26741-26752.
[8] 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495.
LI Q, ZHAO S D, PU Y C, et al.Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495.
[9] 邵志芳, 吴继兰. 基于动态电价风光电制氢容量配置优化[J]. 太阳能学报, 2020, 41(8): 227-235.
SHAO Z F, WU J L.Capacity configuration optimization of hydrogen production from wind and PV power based on dynamic electricity price[J]. Acta energiae solaris sinica, 2020, 41(8): 227-235.
[10] 黄大为, 齐德卿, 于娜, 等. 利用制氢系统消纳风电弃风的制氢容量配置方法[J]. 太阳能学报, 2017, 38(6): 1517-1525.
HUANG D W, QI D Q, YU N, et al.Capacity allocation method of hydrogen production system consuming abandoned wind power[J]. Acta energiae solaris sinica, 2017, 38(6): 1517-1525.
[11] SÁNCHEZ M, AMORES E, RODRIGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International journal of hydrogen energy, 2018, 43(45): 20332-20345.
[12] GOEKCEK M.Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes[J]. International journal of hydrogen energy, 2010, 35(19): 10050-10059.
[13] KOPONEN J, KOSONEN A, RUUSKANEN V, et al.Control and energy efficiency of PEM water electrolyzers in renewable energy systems[J]. International journal of hydrogen energy, 2017, 42(50): 29648-29660.
[14] ZHANG Y, SONG X F, GONG D W. A return-cost-based binary firefly algorithm for feature selection[J]. Information sciences, 2017, 418-419: 561-574.
[15] LUO K P, ZHAO Q H.A binary grey wolf optimizer for the multidimensional knapsack problem-science direct[J]. Applied soft computing, 2019, 83: 105645.

基金

河北省重点研发计划新能源与智能电网技术创新专项(19214501D); 河北省重点研发计划新能源产业技术创新专项(20314501D)

PDF(1651 KB)

Accesses

Citation

Detail

段落导航
相关文章

/