RECENT PROGRESS IN SHORT-TERM FORECASTING OF WIND ENERGY BASED ON STATISTICAL MODELS
Zhao Zeni1, Yun Sining1, Jia Lingyun1, Shi Jiarong2, He Ning3, Yang Liu4
Author information+
1. School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; 2. School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China; 3. School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; 4. School of Architecture, Xi'an University of Architecture and Technology, Xi'an 710055, China
Considering the low prediction performances achieved by statistical models, various hybrid models have been proposed. By combining data preprocessing and optimization algorithms with basic statistical models or integrating artificial neural networks, convolutional neural networks, and recurrent neural networks, researchers can significantly improve the performance of short-term forecasting of wind energy.
Zhao Zeni, Yun Sining, Jia Lingyun, Shi Jiarong, He Ning, Yang Liu.
RECENT PROGRESS IN SHORT-TERM FORECASTING OF WIND ENERGY BASED ON STATISTICAL MODELS[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 224-234 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0500
中图分类号:
TP183
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LUPANGU C, BANSAL R C.A review of technical issues on the development of solar photovoltaic systems[J]. Renewable and sustainable energy reviews, 2017, 73: 950-965. [2] YUN S N, ZHANG Y W, XU Q, et al.Recent advance in new-generation integrated devices for energy harvesting and storage[J]. Nano energy, 2019, 60: 600-619. [3] TASCIKARAOGLU A, UZUNOGLU M.A review of combined approaches for prediction of short-term wind speed and power[J]. Renewable and sustainable energy reviews, 2014, 34: 243-254. [4] GEORGILAKIS P S.Technical challenges associated with the integration of wind power into power systems[J]. Renewable and sustainable energy reviews, 2008, 12(3): 852-863. [5] 王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1): 17-27. WANG W S, WANG Z, DONG C, et al.Status and error analysis of short-term forecasting technology of wind power in China[J]. Automation of electric power systems, 2021, 45(1): 17-27. [6] LYDIA M, SURESH K S, IMMANUEL S A, et al.Linear and non-linear autoregressive models for short-term wind speed forecasting[J]. Energy conversion and management, 2016, 112: 115-124. [7] LI C B, LIN S S, XU F Q, et al.Short-term wind power prediction based on data mining technology and improved support vector machine method: a case study in Northwest China[J]. Journal of cleaner production, 2018, 205: 909-922. [8] BAZIONIS I K, GEORGILAKIS P S.Review of deterministic and probabilistic wind power forecasting: models, methods, and future research[J]. Electricity, 2021, 2(1): 13-47. [9] 张颖超, 王雅晨, 邓华, 等. 基于IAFSA-BPNN的短期风电功率预测[J]. 电力系统保护与控制, 2017, 45(7): 58-63. ZHANG Y C, WANG Y C, DENG H, et al.IAFSA-BPNN for wind power probabilistic forecasting[J]. Power system protection and control, 2017, 45(7): 58-63. [10] 张飞, 习佳, 孙晓辉, 等. 风电场功率预测技术研究进展[J]. 绿色科技, 2019, 74(18): 200-201. ZHANG F, XI J, SUN X H, et al.Research progress of wind farm power prediction technology[J]. Journal of green science and technology, 2019, 74(18): 200-201. [11] TASLIMI R E, ELIAS M F M, RAHIM N A. Using data-driven approach for wind power prediction: a comparative study[J]. Energy conversion and management, 2016, 118: 193-203. [12] WANG J M, ZHOU Q W, ZHANG X T.Wind power forecasting based on time series ARMA model[J]. IOP Conference series: earth and environmental science, 2018, 199: 022015. [13] SFETSOS A.A novel approach for the forecasting of mean hourly wind speed time series[J]. Renewable energy, 2002, 27(2): 163-174. [14] DUTTA S, LI Y, VENKATARAMAN A, et al.Load and renewable energy forecasting for a microgrid using persistence technique[J]. Energy procedia, 2017, 143: 617-622. [15] KORPRASERTSAK N, LEEPHAKPREEDA T.Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models[J]. Energy, 2019, 180: 387-397. [16] 任岩, 胡雷鸣, 黄今, 等. 基于SCADA数据的风力发电机组振动的多元线性回归分析与研究[J]. 可再生能源, 2019, 37(6): 927-930. REN Y, HU L M, HUANG J, et al.Multiple linear regression analysis and research on vibration of wind turbine based on SCADA data[J]. Renewable energy, 2019, 37(6): 927-930. [17] FARIS H, ALJARAH I, AL-MADI N, et al.Optimizing the learning process of feedforward neural networks using lightning search algorithm[J]. International journal onartificial intelligence tools, 2016, 25(6): 1650033. [18] YANG Z S, WANG J.A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm[J]. Energy, 2018, 160: 87-100. [19] ZHANG Y G, ZHANG C H, ZHAO Y, et al.Wind speed prediction with RBF neural network based on PCA and ICA[J]. Journal of electrical engineering, 2018, 69(2): 148-155. [20] XIAO L Y, QIAN F, SHAO W.Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm[J]. Energy conversion and management, 2017, 143: 410-430. [21] 刘增良, 周松林, 周同旭. 基于IDE-WNN的短期风电功率预测及概率评估[J]. 系统仿真学报, 2016, 28(2): 476-482. LIU Z L, ZHOU S L, ZHOU T X.Short -term prediction of wind power based on IDE-WNN and probabilistic evaluation[J]. Journal of system simulation, 2016, 28(2): 476-482. [22] 徐青山, 郑维高, 卞海红, 等. 考虑游程检测法重构的EMD-Elman风电功率短时组合预测[J]. 太阳能学报, 2015, 36(12): 2852-2859. XU Q S, ZHENG W G, BIAN H H, et al.Short term forecast of wind power based on empirical mode decompsition and Elman neural network considering RUNS-TEST reconstruction[J]. Acta energiae solaris sinica, 2015, 36(12): 2852-2859. [23] SANTHOSH M, VENKAIAH C, KUMAR D M V. Short-term wind speed forecasting approach using ensemble empirical mode decomposition and deep boltzmann machine[J]. Sustainable energy, grids and networks, 2019, 19: 100242. [24] WANG C, ZHANG H L, FAN W H, et al.A new wind power prediction method based on chaotic theory and bernstein neural network[J]. Energy, 2016, 117: 259-271. [25] SAMADIANFARD S, HASHEMI S, KARGAR K, et al.Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm[J]. Energy reports, 2020, 6: 1147-1159. [26] 黄慧, 贾嵘, 董开松. 基于时空相关性的NAR动态神经网络风功率超短期组合预测[J]. 太阳能学报, 2020, 41(10): 311-316. HUANG H, JIA R, DONG K S.Uitrashort-term combined forecasting of wind power with NAR neural network based on spatio-temporal correlation[J]. Acta energiae solaris sinica, 2020, 41(10): 311-316. [27] 王佶宣, 邓斌, 王江. 基于经验模态分解与RBF神经网络的短期风功率预测[J]. 电力系统及其自动化学报, 2020, 32(11): 109-115. WANG J X, DENG B, WANG J.Short-term wind power prediction based on empirical mode decomposition and RBF neural network[J]. Journal of electric power systems and automation, 2020, 32(11): 109-115. [28] 孙改平, 蒋传文. 基于两级级联聚类的神经网络风电功率预测[J]. 太阳能学报, 2021, 42(3): 56-62. SUN G P, JIANG C W.Wind power prediction by cascaded clustering method and wavelet neural network[J]. Acta energiae solaris sinica, 2021, 42(3): 56-62. [29] YU C J, LI Y L, ZHANG M J.An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on elman neural network[J]. Energy conversion and management, 2017, 148: 895-904. [30] CHEN J, ZENG G Q, ZHOU W N, et al.Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization[J]. Energy conversion and management, 2018, 165: 681-695. [31] XIAO L, DONG Y X, DONG Y.An improved combination approach based on adaboost algorithm for wind speed time series forecasting[J]. Energy conversion and management, 2018, 160: 273-288. [32] JIANG P, WANG Y, WANG J Z.Short-term wind speed forecasting using a hybrid model[J]. Energy, 2017, 119: 561-577. [33] 陶凯, 吴定会. 基于VMD-JAYA-LSSVM的短期风电功率预测[J]. 控制工程, 2021, 28(6): 1143-1149. TAO K, WU H D.Short-term wind power forecasting based on VMD-JAYA-LSSVM[J]. Control engineering of China, 2021, 28(6): 1143-1149. [34] SUN S L, QIAO H, WEI Y J, et al.A new dynamic integrated approach for wind speed forecasting[J]. Applied energy, 2017, 197: 151-162. [35] WANG H Z, LI G Q, WANG G B, et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied energy, 2017, 188: 56-70. [36] YU Y, SI X S, HU C H, et al.A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31: 1-36. [37] JASEENA K U, KOVOOR B C.Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks[J]. Energy conversion and management, 2021, 234: 113944. [38] LIU X L, LIN Z, FENG Z M.Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM[J]. Energy, 2021, 227: 120492. [39] KISVARI A, LIN Z, LIU X.Wind power forecasting—a data-driven method along with gated recurrent neural network[J]. Renewable energy, 2021, 163: 1895-1909. [40] LIU W B, WANG Z D, LIU X H, et al.A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26. [41] HOSSAIN M A, CHAKRABORTTY R K, ELSAWAH S, et al.Very short-term forecasting of wind power generation using hybrid deep learning model[J]. Journal of cleaner production, 2021, 296: 126564. [42] LIU H, YU C Q, WU H P, et al.A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting[J]. Energy, 2020, 202: 117794. [43] ZHENG S, JIA Z J, ZHANG Z W, et al.Short term wind power prediction based on wavelet transform and BP neural network[C]//Green Energy and Networking, Weihai,China, 2020. [44] DHIMAN H S, DEB D, GUERRERO J M.Hybrid machine intelligent SVR variants for wind forecasting and ramp events[J]. Renewable and sustainable energy reviews, 2019, 108: 369-379. [45] BOKDE N, FEIJóO A, VILLANUEVA D, et al. A review on hybrid empirical mode decomposition models for wind speed and wind power prediction[J]. Energies, 2019, 12(2): 254. [46] HUANG Z, CHALABI Z S.Use of time-series analysis to model and forecast wind speed[J]. Journal of wind engineering and industrial aerodynamics, 1995, 56(2): 311-322. [47] 程启明, 陈路, 程尹曼, 等. 基于EEMD和LS-SVM模型的风电功率短期预测方法[J]. 电力自动化设备, 2018, 38(5): 27-35. CHENG Q M, CHEN L, CHENG Y M, et al.Short-term wind power forecasting method based on EEMD and LS-SVM model[J]. Electric power automation equipment, 2018, 38(5): 27-35. [48] 袁智勇, 白浩, 黄安迪, 等. 基于EEMD-SSA和改进ELM的短期风电功率预测方法[J]. 水利水电技术(中英文), 2021, 52(S1): 323-331. YUAN Z Y, BAI H, HUANG A D, et al.Short-term wind power forecasting method based on EEMD-SSA and improved ELM model[J]. Water resources and hydropower engineering, 2021, 52(S1): 323-331. [49] HAO Y, DONG L, LIAO X Z, et al.A novel clustering algorithm based on mathematical morphology for wind power generation prediction[J]. Renewable energy, 2019, 136: 572-585. [50] YU M X.Short-term wind speed forecasting based on random forest model combining ensemble empirical mode decomposition and improved harmony search algorithm[J]. International journal of green energy, 2020, 17(5): 332-348. [51] SHI X Y, LEI X W, HUANG Q, et al.Hourly day-ahead wind power prediction using the hybrid model of variational model decomposition and long short-term memory[J]. Energies, 2018, 11(11): 3227. [52] LIU H, MI X W, LI Y F, et al.Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression[J]. Renewable energy, 2019, 143: 842-854. [53] 刘爱国, 薛云涛, 胡江鹭, 等. 基于GA优化SVM的风电功率的超短期预测[J]. 电力系统保护与控制, 2015, 43(2): 90-95. LIU A G, XUE Y T, HU J L, et al.Ultra-short-term wind power forecasting based on SVM optimized by GA[J]. Power system protection and control, 2015, 43(2): 90-95. [54] BARHMI S, EL FATNI O.Hourly wind speed forecasting based on support vector machine and artificial neural networks[J]. IAES international journal of artificial intelligence, 2019, 8(3): 286. [55] LI L L, ZHAO X, TSENG M L, et al.Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm[J]. Journal of cleaner production, 2020, 242: 118447. [56] 王小娟, 刘俊霞, 胡兵, 等. 基于CS-SVR模型的短期风电功率预测[J]. 计算机测量与控制, 2020, 28(1): 152-155. WANG X J, LIU J X, HU B, et al.Short-term wind power prediction based on CS-SVR model[J]. Computer measurement & control, 2020, 28(1): 152-155. [57] WEN X Q.Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine[J]. Applied soft computing, 2020, 94: 106476. [58] ALTAN A, KARASU S, ZIO E.A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer[J]. Applied soft computing, 2021, 100: 106996. [59] TALAAT M, FARAHAT M A, MANSOUR N, et al.Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach[J]. Energy, 2020, 196: 117087. [60] 王慧莹, 吴亮红, 梅盼盼, 等. 果蝇优化广义神经网络的风电功率短期预测[J]. 电子测量与仪器学报, 2019, 33(6): 177-183. WANG H Y, WU L H, MEI P P, et al.Fruit fly optimization based generalized regression neural network for wind power short-term prediction[J]. Journal of electronic measurement and instrumentation, 2019, 33(6): 177-183. [61] 闫庆友, 朱敬尧, 秦光宇. 基于混合优化算法的风电功率预测方法研究[J]. 节能, 2021, 40(4): 32-35. YAN Q Y, ZHU J Y, QIN G Y.Research on wind power forecasting method based on hybrid optimization algorithm[J]. Energy conservation, 2021, 40(4): 32-35. [62] WU Q L, LIN H X.Short-term wind speed forecasting based on hybrid variational mode decomposition and least squares support vector machine optimized by bat algorithm model[J]. Sustainability, 2019, 11(3): 652. [63] CHEN X, LI Y L, ZHANG Y C, et al.A novel hybrid model based on an improved seagull optimization algorithm for short-term wind speed forecasting[J]. Processes, 2021, 9(2): 387. [64] JIANG F, HE J, PENG Z.Short-term wind power forecasting based on BP neural network with improved ant lion optimizer[C]//2018 37th Chinese Control Conference (CCC), Wuhan, China, 2018. [65] FU C, LI G Q, LIN K P, et al.Short-term wind power prediction based on improved chicken algorithm optimization support vector machine[J]. Sustainability, 2019, 11(2): 512. [66] SINA A, KAUR D.Short term load forecasting model based on kernel-support vector regression with social spider optimization algorithm[J]. Journal of electrical engineering & technology, 2020, 15(1): 393-402. [67] YUAN X H, CHEN C, YUAN Y B, et al.Short-term wind power prediction based on LSSVM-GSA model[J]. Energy conversion and management, 2015, 101: 393-401. [68] KIM T Y, CHO S B.Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81. [69] HONG Y Y, RIOFLORIDO C L P P. A hybrid deep learning-based neural network for 24-h ahead wind power forecasting[J]. Applied energy, 2019, 250: 530-539. [70] MA T, WANG C, WANG J Z, et al.Particle-swarm optimization of ensemble neural networks with negative correlation learning for forecasting short-term wind speed of wind farms in western China[J]. Information sciences, 2019, 505: 157-182. [71] 卢继平, 曾燕婷, 喻华, 等. 基于改进AWNN的风电功率超短期多步预测[J]. 太阳能学报, 2021, 42(1): 166-173. LU J P, ZENG Y T, YU H, et al.Ultra-short-term wind power multi-step forecasting based on improved AWNN[J]. Acta energiae solaris sinica, 2021, 42(1): 166-173. [72] 方必武, 刘涤尘, 王波, 等. 基于小波变换和改进萤火虫算法优化LSSVM的短期风速预测[J]. 电力系统保护与控制, 2016, 44(8): 37-43. FANG B W, LIU T C, WANG B, et al.Short-term wind speed forecasting based on WD-CFA-LSSVM model[J]. Power system protection and control, 2016, 44(8): 37-43. [73] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD-ACS-LSSVM的短期风电功率预测[J]. 太阳能学报, 2020, 41(5): 77-84. JIANG G M, CHEN Z J, LI X Z, et al.Short-trem prediction of wind power based on EEMD-ACS-LSSVM[J]. Acta energiae solaris sinica, 2020, 41(5): 77-84. [74] YIN H, OU Z H, HUANG S Q, et al.A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition[J]. Energy, 2019, 189: 116316.