基于深度卷积自编码器的风电机组故障预警方法研究

刘家瑞, 杨国田, 杨锡运

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 215-223.

PDF(2388 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2388 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 215-223. DOI: 10.19912/j.0254-0096.tynxb.2021-0506

基于深度卷积自编码器的风电机组故障预警方法研究

  • 刘家瑞, 杨国田, 杨锡运
作者信息 +

RESEARCH ON WIND TURBINE FAULT WARNING METHOD BASED ON DEEP CONVOLUTION AUTO-ENCODER

  • Liu Jiarui, Yang Guotian, Yang Xiyun
Author information +
文章历史 +

摘要

通过风电机组状态监测进行故障预警,可防止故障进一步发展,降低风场运维成本。为充分挖掘风电机组监控与数据采集(SCADA)各状态参数时序信息,以及不同参数之间的非线性关系,该文将深度学习中自动编码器(AE)与卷积神经网络(CNN)相结合,提出基于深度卷积自编码(DCAE)的风电机组状态监测故障预警方法。首先基于历史SCADA数据离线建立基于DCAE的机组正常运行状态模型,然后分析重构误差确定告警阈值,使用EMWA控制图对实时对机组状态监测并进行故障预警。以北方某风电场2 MW双馈型风电机组叶片故障为实例进行实验分析,结果表明该文提出DCAE状态监测故障预警方法,可有效对机组故障提前预警,且优于现有基于深度学习的风电机组故障预警方法,可显著提升重构精度、减少模型参数和训练时间。

Abstract

Early fault warning through wind turbine condition monitoring can prevent further development of faults and reduce wind farm operation and maintenance costs. To fully explore the time sequence information of parameters of wind turbine supervisory control and data acquisition (SCADA) and the nonlinear relationship between them, A wind turbine condition monitoring and fault warning method based on deep convolutional auto-encoder (DCAE) which combines the auto-encoder (AE) and convolutional neural network (CNN) is proposed. Firstly, based on the historical SCADA offline data, the DCAE for wind turbine condition monitoring is established. Then the reconstruction error is analyzed to determine the alarm threshold. Finally, the EMWA control chart is used to monitor the status of a wind turbine in real-time. Taking the failure of a 2 MW doubly-fed wind turbine blade as an example, the proposed DCAE method is verified. The results show that the DCAE method proposed in this paper is effective in early warning of the wind turbine failure, and is superior to the existing deep learning-based wind turbine condition monitoring methods. The proposed method significantly improve reconstruction accuracy, reduce model parameters and training time.

关键词

风电机组 / 深度学习 / 无监督学习 / SCADA系统 / 状态监测 / 故障预警

Key words

wind turbines / deep learning / unsupervised learning / SCADA system / condition monitoring / fault warning

引用本文

导出引用
刘家瑞, 杨国田, 杨锡运. 基于深度卷积自编码器的风电机组故障预警方法研究[J]. 太阳能学报. 2022, 43(11): 215-223 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0506
Liu Jiarui, Yang Guotian, Yang Xiyun. RESEARCH ON WIND TURBINE FAULT WARNING METHOD BASED ON DEEP CONVOLUTION AUTO-ENCODER[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 215-223 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0506
中图分类号: TK315   

参考文献

[1] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[2] YANG W, TAVNER P J, CRABTREE C J, et al.Wind turbine condition monitoring: technical and commercial challenges[J]. Wind energy, 2014, 17(5): 673-693.
[3] WANG J, QIAO W, QU L Y.Wind turbine bearing fault diagnosis based on sparse representation of condition monitoring signals[J]. IEEE transactions on industry applications, 2019, 55(2): 1844-1852.
[4] LIU Z, WANG X, ZHANG L.Fault diagnosis of industrial wind turbine blade bearing using acoustic emission analysis[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 6630-6639.
[5] BANGALORE P, TJERNBERG L B.An artificial neural network approach for early fault detection of gearbox bearings[J]. IEEE transactions on smart grid, 2015, 6(2): 980-987.
[6] 魏乐, 胡晓东, 尹诗. 基于优化XGBoost的发电机前轴承故障预警[J]. 系统仿真学报, 2021, 33(10): 2335-2343.
WEI L, HU X D, YIN S.Generator front bearing fault warning based on optimized XGBoost[J]. Journal of system simulation, 2021, 33(10): 2335-2343.
[7] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[8] WANG L, ZHANG Z J, LONG H, et al.Wind turbine gearbox failure identification with deep neural networks[J]. IEEE transactions on industrial informatics, 2017, 13(3): 1360-1368.
[9] 魏书荣, 张鑫, 符杨, 等. 基于GRA-LSTM-Stacking模型的海上双馈风力发电机早期故障预警与诊断[J]. 中国电机工程学报, 2021, 41(7): 2373-2382.
WEI S R, ZHANG X, FU Y, et al.Early fault warning and diagnosis of offshore doubly-fed wind turbines based on GRA-LSTM-Stacking model[J]. Proceedings of the CSEE, 2021, 41(7): 2373-2382.
[10] 黄荣舟, 汤宝平, 杨燕妮, 等. 基于长短时记忆网络融合SCADA数据的风电齿轮箱状态监测[J]. 太阳能学报, 2021, 42(1): 235-239.
HUANG R Z, TANG B P, YANG Y N, et al.Condition monitoring of wind turbine gearbox based on LSTM neural network fusing SCADA data[J]. Acta energiae solaris sinica, 2021, 42(1): 235-239.
[11] ZHAO H, LIU H, HU W, et al.Anomaly detection and fault analysis of wind turbine components based on deep learning network[J]. Renewable energy, 2018, 127(11): 825-834.
[12] 赵洪山, 闫西慧, 王桂兰, 等. 应用深度自编码网络和XGBoost 的风电机组发电机故障诊断[J]. 电力系统自动化, 2019, 43(1): 81-90.
ZHAO H S, YAN X H, WANG G L, et al.Fault diagnosis of wind turbine generator based on deep autoencoder network and XGBoost[J]. Automation of electric power systems, 2019, 43(1): 81-90.
[13] WANG L, ZHANG Z, XU J, et al.Wind turbine blade breakage monitoring with deep autoencoders[J]. IEEE transactions on smart grid, 2018, 9(4): 2824-2833.
[14] JIANG G, XIE P, HE H, et al.Wind turbine fault detection using a denoising autoencoder with temporal Information[J]. IEEE/ASME transactions on mechatronics, 2018, 23(1): 89-100.
[15] 陈俊生, 李剑, 陈伟根, 等. 采用滑动窗口及多重加噪比堆栈降噪自编码的风电机组状态异常检测方法[J].电工技术学报, 2020, 35(2): 346-358.
CHEN J S, LI J, CHEN W G, et al.Wind turbine state abnormality detection method using sliding window and multiple noise-adding stack noise reduction auto-encoding[J]. Transactions of the Chinese Society of Electrical Engineering, 2020, 35(2): 346-358 .
[16] 罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239.
LUO H L, CHEN H K.A review of research on target detection based on deep learning[J]. Acta electronica sinica, 2020, 48(6): 1230-1239.
[17] ZEILER M D, KRISHNAN D, TAYLOR G W, et al.Deconvolutional networks[C]//Computer Vision and Pattern Recognition(CVPR), Piscataway, NJ, USA, IEEE, 2010: 2528-2535.
[18] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 39(4): 640-651.
[19] KINGMA D P, BA J L.Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations(ICLR), New York,NY, USA, ACM, 2015: 1-15.
[20] IOFFE S, SZEGEDY C.Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//2015 International Conference on Machine Learning, New York, NY, USA, ACM, 2015: 448-456.
[21] MONTGOMERY D C.Introduction to statistical quality control[M]. New York: John Wiley & Sons, 2007.
[22] PRABHU S S, RUNGER G C.Designing a multivariate EWMA control chart[J]. Journal of quality technology, 1997, 1(29): 8-15.
[23] MAATEN L, HINTON G.Visualizing high-dimensional data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.

基金

国家自然科学基金(51677067)

PDF(2388 KB)

Accesses

Citation

Detail

段落导航
相关文章

/