为解决传统耦合太阳能辅热的先进绝热压缩空气储能(AA-CAES+CSP)系统热能损失大的问题,提出其释能过程的改进方案。从热力学和经济学角度对改进前后的系统性能进行比较分析。结果表明,改进系统的热、冷能性能系数及年利润率显著提高。同时,进行参数敏感性分析,结果表明:集热温度升高,改进系统的冷能性能系数下降,两系统其他指标上升;储气室压差越大,系统年利润率越高,而其他指标越低;压缩/膨胀功率增大,年利润率减小,而其他指标增大。此外,以循环效率和年利润率为目标函数,采用灰狼算法对系统进行多目标优化,设置较高集热温度、压缩/膨胀功率和较低储气室压比时,更易获得最佳系统性能。
Abstract
In order to solve the problem of large thermal energy loss in the conventional advanced adiabatic compressed air energy storage concentrating solar power (AA-CAES+CSP) system coupled with solar auxiliary heat, the energy release process of the system is modified. From the perspective of thermodynamics and economics, a comparatively analysis of the performances of conventional and modified system is conducted. The results show that the coefficient of performance of heating and cooling, annual profit margins of the modified system are significantly improved. Meanwhile, the parameter sensitivity analysis is carried out. The results indicate that, as the collector temperature rises. The coefficient of performance of cooling the improved system decreases, and other indexes of the two systems rise; the greater the pressure difference in the gas storage chamber, the higher annual profit margin of the system, and the lower other indexes. As the compression/expansion power increases, the annual profit margin decreases, while other indexes increase. Moreover, the cycle efficiency and annual profit margin are selected as the objective function, and the gray wolf algorithm is applied to implement the multi-objective optimization. It is easier to obtain the best system performance when higher heat collection temperature, compression/expansion power and lower gas storage pressure ratio are set.
关键词
AA-CAES+CSP /
比较性分析 /
敏感性分析 /
多目标优化
Key words
AA-CAES+CSP /
comparatively analysis /
sensitivity analysis /
multi-objective optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄景坚, 赵攀, 王佩姿, 等. 热电共蓄式压缩空气储能系统特性研究[J]. 工程热物理学报, 2020, 41(6): 1300-1307.
HUANG J J, ZHAO P, WANG P Z, et al.Performance analysis of a high temperature hybrid compressed air energy storage system[J]. Journal of engineering thermophysics, 2020, 41(6): 1300-1307.
[2] BUDT M, WOLF D, SPAN R, et al.A review on compressed air energy storage: basic principles, past milestones and recent developments[J]. Applied energy, 2016,170: 250-268.
[3] LUO X, WANG J H, DOONER M, et al.Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied energy, 2015,137: 511-536.
[4] 杨科, 张远, 李雪梅, 等. 先进绝热压缩空气储能系统的设计计算[J]. 工程热物理学报, 2012, 33(5): 725-728.
YANG K, ZHANG Y, LI X M, et al.Design and calculation of advanced adiabatic compressed air energy storage system[J]. Journal of engineering thermophysics, 2012, 33(5): 725-728.
[5] HE Y, CHEN H S, XU Y J, et al.Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system[J]. Energy, 2018, 165: 349-359.
[6] KUSHNIR R, DAYAN A, ULLMANN A.Temperature and pressure variations within compressed air energy storage caverns[J]. International journal of heat and mass transfer, 2012, 55(21-22): 5616-5630.
[7] 李雪梅, 杨科, 张远. AA-CAES压缩膨胀系统的运行级数优化[J]. 工程热物理学报, 2013, 34(9): 1649-1653.
LI X M, YANG K, ZHANG Y.Optimization design of compression and expansion stages in adiabatic compressed air energy storage system[J]. Journal of engineering thermophysics, 2013, 34(9): 1649-1653.
[8] 郭文宾, 周鑫, 左志涛, 等. CAES离心压缩机可调扩压器调节规律研究[J]. 工程热物理学报, 2021, 42(2): 335-341.
GUO W B, ZHOU X, ZUO Z T, et al.Regulation law research on adjustable diffusers of centrifugal compressor in CAES[J]. Journal of engineering thermophysics, 2021, 42(2): 335-341.
[9] PROCZKA J J, MURALIDHARAN K, VILLELA D, et al.Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage[J]. Energy conversion and management, 2013, 65: 597-605.
[10] 李雪梅, 杨科, 张远. AA-CAES系统储气室热力学特性研究[J]. 工程热物理学报, 2015, 36(3): 513-516.
LI X M, YANG K, ZHANG Y.Thermodynamic analysis of storage cavern in advanced adiabatic compressed air energy storage system[J]. Journal of engineering thermophysics, 2015, 36(3): 513-516.
[11] ZHANG Y, YANG K, LI X M, et al.The thermodynamic effect of thermal energy storage on compressed air energy storage system[J]. Renewable energy, 2013, 50: 227-235.
[12] YANG K, ZHANG Y, LI X M, et al.Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system[J]. Energy conversion and management, 2014, 86: 1031-1044.
[13] MOZAYENI H, NEGNEVITSKY M, WANG X L, et al.Performance study of an advanced adiabatic compressed air energy storage system[J]. Energy procedia, 2017, 110: 71-76.
[14] MOZAYENI H, WANG X L, NEGNEVITSKY M, et al.Exergy analysis of a one-stage adiabatic compressed air energy storage system[J]. Energy procedia, 2019, 160: 260-267.
[15] LUO X, WANG J H, KRUPKE C, et al.Modelling study, efficiency analysis and optimization of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage[J]. Applied energy, 2016, 162: 589-600.
[16] 韩中合, 王珊, 胡志强, 等. AA-CAES+CSP系统运行策略研究[J]. 太阳能学报, 2021, 42(1): 423-430.
HAN Z H, WANG S, HU Z Q, et al.Study on operation strategy of AA-CAES+CSP system[J]. Acta energiae solaris sinica, 2021, 42(1): 423-430.
[17] 韩中合, 王珊, 胡志强, 等. AA-CAES+CSP系统性能及关键参数分析[J]. 太阳能学报, 2021, 42(2): 322-329.
HAN Z H, WANG S, HU Z Q, et al.Analysis on performance and key parameters of AA-CAES+CSP system[J]. Acta energiae solaris sinica, 2021, 42(2): 322-329.
[18] JUBEH N M, NAJJAR Y S H. Green solution for power generation by adoption of adiabatic CAES system[J]. Applied thermal engineering, 2012, 44: 85-89.
[19] JIANG R H, YIN H B, PENG K W, et al.Multi-objective optimization, design and performance analysis of an advanced trigenerative micro compressed air energy storage system[J]. Energy conversion and management, 2019, 186: 323-333.
[20] ZHANG X F, ZENG R, DENG X L, et al.Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage (CAES)[J]. Energy conversion and management, 2019, 199: 111953.
[21] YAO E R, WANG H R, WANG L A, et al.Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage[J]. Energy conversion and management, 2016, 118: 377-386.
[22] JAVIDSHARIFI M, NIKNAM T, AGHAEI J, et al.Multi-objective day-ahead scheduling of microgrids using modified grey wolf optimizer algorithm[J]. Journal of intelligent & fuzzy systems, 2018, 36(3): 2857-2870.
[23] LI C S, WANG W X, CHEN D S.Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer[J]. Energy, 2019, 171: 241-255.
[24] NARGES G, HAMED M, CHRISTIAN B.A GIS-based method to identify potential sites for pumped hydro energy storage—case of Iran[J]. Energy, 2019, 169: 854-867.
基金
河北省自然科学基金(E2018502059)