海床冲刷对海上风电海缆及弯曲限制器的影响研究

陶伟, 刘溟江, 周国栋, 邱旭

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 186-193.

PDF(1795 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1795 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 186-193. DOI: 10.19912/j.0254-0096.tynxb.2021-0534

海床冲刷对海上风电海缆及弯曲限制器的影响研究

  • 陶伟1,2, 刘溟江2, 周国栋2, 邱旭1
作者信息 +

INFLUENCE OF SCOUR ON SUBSEA CABLES AND BEND RESTRICTORS OF OFFSHORE WIND FARM

  • Tao Wei1,2, Liu Mingjiang1, Zhou Guodong2, Qiu Xu1
Author information +
文章历史 +

摘要

该文以海上风电领域常用的海缆及弯曲限制器系统为研究对象,从系统所受荷载、结构特征、响应与失效特征出发,定性分析海床冲刷对系统结构响应的影响。同时借助海洋工程动力分析软件Orcaflex,建立数值分析模型并进行定量分析,以冲刷坑几何尺度、海缆松驰程度、J形管末端角度与喇叭口同海床相对高程等几何参数为变量,探讨海缆及弯曲限制器的拉伸和弯曲响应变化规律。结果表明上述参数显著影响海缆及弯曲限制器对海底冲刷的适应能力,相关研究结果可为海上风电海缆工程设计和运维管理提供参考。

Abstract

This paper qualitatively analyzes the effects of the changes on the system configuration due to the seabed scour. A numerical analysis model is established with Orcaflex, for quantitatively study and obtaining the change rules of the structural responses of a subsea cable and bend restrictor system, along with the development of seabed scour. Furthermore, the applicability to seabed scour for different configurations of cable and bend restrictor system, is explored by changing some key configuration parameters, including the redundancy length of subseacable, the angle of J-tube lower end, and the relative elevation of the bell-mouth to seabed. It is proved that the above parameters have significant impacts on the applicability to the seabed scour for subsea cable and bend restrictor systems. This paper can be used as a reference for the engineering design, operation and maintenance of subsea cables of wind farms.

关键词

海上风电场 / 水下工程 / 动态分析 / 弯矩 / 海缆保护

Key words

offshore wind farms / subsea engineering / dynamic analysis / bending moments / subsea cable protection

引用本文

导出引用
陶伟, 刘溟江, 周国栋, 邱旭. 海床冲刷对海上风电海缆及弯曲限制器的影响研究[J]. 太阳能学报. 2022, 43(11): 186-193 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0534
Tao Wei, Liu Mingjiang, Zhou Guodong, Qiu Xu. INFLUENCE OF SCOUR ON SUBSEA CABLES AND BEND RESTRICTORS OF OFFSHORE WIND FARM[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 186-193 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0534
中图分类号: P751   

参考文献

[1] THIES P R, JOHANNING L, BASHIR I, et al.Accelerated reliability testing of articulated cable bend restrictor for offshore wind applications[J]. International journal of marine energy, 2016, 16: 65-82.
[2] 陈琛, 马宏旺, 李玉韬, 等. 冲刷对海上风电单桩基础自振频率影响的研究[J]. 振动与冲击, 2020, 39(22): 16-22.
CHEN C, MA H W, LI Y T, et al.Effects of scour on the natural frequency of offshore wind turbine structures[J]. Journal of vibration and shock, 2020, 39(22): 16-22.
[3] 杜硕, 戴国亮, 高鲁超, 等. 波流作用近海风机单桩基础局部冲刷深度预测[J]. 东南大学学报(自然科学版), 2020, 50(4): 616-622.
DU S, DAI G L, GAO L C, et al.Prediction of local scour depth at offshore wind turbine monopile foundation in combined waves and current[J]. Journal of Southeast University(natural science edition), 2020, 50(4): 616-622.
[4] 唐冬玥, 赵鸣. 潮流作用下风电塔单桩基础冲刷数值模拟[J]. 结构工程师, 2020, 36(6): 158-164.
TANG D Y, ZHAO M.Numerical simulation on scour around monopile foundation of wind turbine under tidal current[J]. Structural engineers, 2020, 36(6): 158-164.
[5] 张晓蕊, 吴子昂, 戴东鹰. 海上风机单桩基础局部冲刷计算分析[J]. 水电与新能源, 2020, 34(3): 33-37.
ZHANG X R, WU Z A, DAI D Y.Calculation and analysis of local scour of monopile foundation of offshore wind turbines[J]. Hydropower and new energy, 2020, 34(3): 33-37.
[6] 廖蔚茗. 循环荷载作用下粘土场地近海风机单桩式基础变形与受力特性研究[D]. 成都: 西南交通大学, 2018.
LIAO W M.Experimental study of offshore wind turbine with monopile foundation constructed in clayey site subjected to cyclic lateral load[D]. Chengdu: Southwest Jiaotong University, 2018.
[7] 邓俊儒, 张青云. 基于多种桩型的海缆保护系统研究[J]. 南方能源建设, 2020, 7(2): 91-97.
DENG J R, ZHANG Q Y.Research on several subsea cable protection systems based on different foundations[J]. Southern energy construction, 2020, 7(2): 91-97.
[8] 周忠旭. 固定式风电平台下的悬挂海缆保护设计与分析[D]. 大连: 大连理工大学, 2020.
ZHOU Z X.Design and analysis of suspended submarine cable protection under fixed wind power platform[D]. Dalian: Dalian University of Technology, 2020.
[9] 张聪. 海上风电海缆弯曲保护装置设计技术研究[D]. 大连: 大连理工大学, 2018.
ZHANG C.Research on design techniques of offshore wind power cable bending protection device[D]. Dalian: Dalian University of Technology, 2018.
[10] 李博, 李文博, 郭江艳, 等. 不同本构模型限弯器非线性力学分析[J]. 石油机械, 2019, 47(7): 48-53.
LI B, LI W B, GUO J Y, et al.Nonlinear mechanical analysis of subsea bend restrictor under different constitutive models[J]. China petroleum machinery, 2019, 47(7): 48-53.
[11] 董吴磊, 杨华勇, 郭朝阳, 等. 基于材料非线性的两种海缆弯曲限制器的有限元分析与试验验证[J]. 海洋技术学报, 2019, 38(6): 89-94.
DONG W L, YANG H Y, GUO C Y, et al.Finite element analysis and experimental verification of two kinds of bend restrictors for submarine cables based on material non-linearity[J]. Journal of ocean technology, 2019, 38(6): 89-94.
[12] 安世居, 杨强, 白海洋, 等. 柔性软管弯曲限制器的设计[J]. 油气储运, 2016, 35(5): 551-554.
AN S J, YANG Q, BAI H Y, et al.Design of bend restrictor for flexible pipes[J]. Oil & gas storage and transportation, 2016, 35(5): 551-554.
[13] 石涵, 李阳, 郭宏, 等. 集束动态海底电缆截面机械性能分析[J]. 海洋工程装备与技术, 2020, 7(2): 68-72.
SHI H, LI Y, GUO H, et al.Sectional mechanical properties analysis of dynamic bundled submarine cable[J]. Ocean engineering equipment and technology, 2020, 7(2): 68-72.
[14] 邵森安, 马勰, 丰如男, 等. 海底电缆国内外研究综述[J]. 南方电网技术, 2020, 14(11): 81-88.
SHAO S A, MA X, FENG R N, et al.Review of researches on submarine cables at home and abroad[J]. Southern power system technology, 2020, 14(11): 81-88.
[15] 卢青针. 水下生产系统脐带缆的结构设计与验证[D]. 大连: 大连理工大学, 2013.
LU Q Z.Structural design and validation of umbilical of subsea production system[D]. Dalian: Dalian University of Technology, 2013.
[16] PATEL M, SEYED F.Review of flexible riser modelling and analysis techniques[J]. Engineering structures, 1995, 17(4): 293-304.
[17] 陈金龙. 海洋动态脐带缆的整体设计与分析[D]. 大连: 大连理工大学, 2011.
CHEN J L.Global design and analysis of marine dynamic umbilicals[D]. Dalian: Dalian University of Technology, 2011.
[18] 李争霖. 畸形波对海上风电场高承台复合桩基础及海缆敷设作用数值模拟研究[D]. 广州: 华南理工大学, 2020.
LI Z L.Numerical simulation of the effect of freak wave on high-rise cap with multiple piles foundation and submarine cable laying in offshore wind farm[D]. Guangzhou: South China University of Technology, 2020.
[19] Orcina Ltd.Orcaflex user manual[M]. https://www.academia.edu/27056848/OrcaFlex_Manual, 2016.
[20] DNV-OS-F201, Dynamic risers[S].
[21] 陈金龙, 阎军, 卢青针, 等. 深水柔性管道铺设过程的动态仿真[J]. 计算机辅助工程, 2017, 26(4): 7-13.
CHEN J L, YAN J, LU Q Z, et al.Dynamic simulation on laying process of flexible pipe in deep water[J]. Computer aided engineering, 2017, 26(4): 7-13.
[22] DNVGL-RP-C205, Environmental conditions and environmental loads[S].
[23] DNVGL-RP-0360, Subsea power cables in shallow water[S].

基金

中国华能集团有限公司科技项目(HNKJ19-H17)

PDF(1795 KB)

Accesses

Citation

Detail

段落导航
相关文章

/