为探究影响多端直流系统稳定性的关键因素,针对电压源型换流器、直流线路、可再生能源和直流负荷等部分组成的低压三端直流系统,建立其相应的等效电路,并结合主从控制模式下各换流器控制策略,形成了系统整体的状态空间模型。其次,结合主导特征值对含可再生能源的低压多端直流系统进行小信号稳定性研究,对比分析不同参数变化时主导特征值的移动轨迹,进而确定换流器直流侧电容、控制器外环参数等影响系统稳定性的关键因素。在此基础上,基于Matlab/Simulink搭建含可再生能源的低压多端直流系统仿真模型,验证了理论分析的正确性。
Abstract
With the increasing growth of distributed renewable energy sources such as PV, wind power and energy storage, DC load, low-voltage multi-terminal DC system gradually becomes one of the main network forms of distribution system.To explore the key factors which influence the stability of multi-terminal DC system, this article establishes the corresponding equivalent circuit for a low-voltage three-terminal DC system consisting of voltage-source converter, DC lines, renewable energy and DC loads, combined with the control strategy of each converter in master-slave control mode, a state space model of the system as a whole is formed. Secondly, the small-signal stability study of the low-voltage multi-terminal DC system with renewable energy is carried out by combining the dominant eigenvalues, comparing and analyzing the trajectory of dominant eigenvalues when different parameters are changed, and then determining the key factors affecting the stability of the system, such as the DC-side capacitance of the converter and the outer-loop parameters of the controller. On this basis, a simulation model of low-voltage multi-terminal DC system with renewable energy is built based on Matlab/Simulink to verify the correctness of the theoretical analysis.
关键词
可再生能源 /
低压系统电压控制 /
控制器参数 /
小信号模型信号分析 /
主导特征值 /
主从控制
Key words
renewable energy /
voltage control /
controller parameters /
signal analysis /
dominant eigenvalue /
master-slave control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁明, 胡迪, 毕锐, 等. 含高渗透率可再生能源的配电网可靠性分析[J]. 太阳能学报, 2020,41(2): 194-202.
DING M, HU D, BI R, et al.Reliability analysis of distribution system containing high penetration renewable energy[J]. Acta energiae solaris sinica, 2020,41(2): 194-202.
[2] 邓思成, 郑天文, 陈来军, 等. 提高关键负荷供电可靠性的交直流微网分布式能量优化管理策略[J]. 高电压技术, 2021, 47(1): 55-62.
DENG S C, ZHENG T W, CHEN L J, et al.Optimal management strategy for distributed energy with enhanced power supply reliability of critical loads for AC/DC hybrid microgrids[J]. High voltage engineering, 2021, 47(1): 55-62.
[3] 任智君, 郭红霞, 杨苹, 等. 含高比例可再生能源配电网灵活资源双层优化配置[J]. 太阳能学报, 2021, 42(9): 33-38.
REN Z J, GUO H X, YANG P, et al.Double-layer optimal configuration of flexible resources with high proportion of renewable energy distribution network[J]. Acta energiae solaris sinica, 2021, 42(9): 33-38.
[4] 徐玉琴, 周聪. 抑制DPVG接入低压配电网电压波动的方法[J]. 太阳能学报, 2021, 42(4): 260-267.
XU Y Q, ZHOU C.Voltage fluctuation suppression strategies of DPVG connected in low voltage distribution network[J]. Acta energiae solaris sinica, 2021, 42(4): 260-267.
[5] 李霞林, 郭力, 王成山. 微网主从控制模式下的稳定性分析[J]. 电工技术学报, 2014, 29(2): 24-34.
LI X L, GUO L, WANG C S.Stability analysis in a master-slave control based microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 24-34.
[6] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178.
ZHU X R, LI Z, MENG F Q.Stability analysis of DC microgrid based on different grid structure[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178.
[7] 胡辉勇, 王晓明, 于淼, 等. 主从控制下直流微电网稳定性分析及有源阻尼控制方法[J]. 电网技术, 2017, 41(8): 2664-2671.
HU H Y, WANG X M, YU M, et al.Stability analysis and active damping control for master-slave controlled DC microgrid[J]. Power system technology, 2017, 41(8): 2664-2671.
[8] WU T F, CHANG C H, LIN L C, et al.DC-bus voltage control with a three-phase bidirectional inverter for DC distribution systems[J]. IEEE transactions on power electronics, 2013, 28(4): 1890-1899.
[9] DU W J, FU Q, WANG H F.Small-signal stability of an AC/MTDC power system as affected by open-loop modal coupling between the VSCs[J]. IEEE transactions on power systems, 2018, 33(3): 3143-3152.
[10] 汪亮, 彭勇刚, 吴韬, 等. 光储交流微电网孤岛模式下的改进型主从控制[J]. 高电压技术, 2020, 46(10): 3530-3540.
WANG L, PENG Y G, WU T, et al.Improved master-slave control for islanded AC microgrid with PV and energy storage systems[J]. High voltage engineering, 2020, 46(10): 3530-3540.
[11] 邓卫, 裴玮, 张释中, 等. 面向三端直流系统运行边界提升的集成参数优化配置研究[J]. 电工技术学报, 2020, 35(8): 1705-1715.
DENG W, PEI W, ZHANG S Z,et al.Research on integrated parameter optimization configuration for operational boundary improvement of three-multi-terminal DC system[J]. Transactios of China Electrotechnical Society, 2020, 35(8): 1705-1715.
[12] 姚广增, 彭克, 李海荣, 等. 柔性直流配电系统高频振荡降阶模型与机理分析[J]. 电力系统自动化, 2020, 44(20): 29-36.
YAO G Z, PENG K, LI H R, et al.Reduced-order model and mechanism analysis of high-frequency oscillation in flexible DC distribution system[J]. Automation of electric power system, 2020, 44(20): 29-36.
[13] DENG W, PEI W, WU Q, et al.Analysis of interactive behavior and stability of low voltage multi-terminal DC system under droop control modes[J]. IEEE transactions on industrial electronics, 2022, 69(7): 6948-6959.
基金
中国科学院洁净能源先导科技专项(XDA21050100); 中国科学院青年创新促进会(2018170); 中科院前沿科学重点研究(QYZDBSSW-JSC024)